
## Nutrition Vétérinaire du Chien et du Chat

Première édition

## Dr. Sébastien LEFEBVRE



Copyright © 2019 Sébastien Lefebvre

VETAGRO SUP

VETBRAIN.FR VETAGRO-SUP.FR

Licensed under the Creative Commons Attribution 3.0 Unported License (the "License"). You may not use this file except in compliance with the License. You may obtain a copy of the License at http://creativecommons.org/licenses/by/3.0.

Licence Creative Commons Attribution 3.0. Vous pouvez utilisez ce document en accord avec licence. Vous pouvez obtenir une copie de la licence à l'adresse http://creativecommons.org/licenses/by/3.0

First printing, 13 mars 2020

## **Participants**

Ce projet a pu voir le jour à l'aide de nombreux participants qui, par leur travail et les échanges que l'auteur a pu avoir avec eux, ont contribué à la création de cet ouvrage.

L'équipe de nutrition animale de VetAgro Sup, école vétérinaire de Lyon : )

- Dr Denis Grancher, PhD, DMV
- Dr Laurent Alves de Oliveira, PhD, DMV
- Dr Sébastien Lefebvre, PhD, DMV

Les vétérinaires qui, durant leur thèse, ont participé ou participent encore à la création de cet outil :

- Dr. Vet. Anne-Cécile Caël, DMV
- Dr. Vet. Agathe Champetier, DMV
- Dr. Vet. Camille Tramoni, DMV
- Dr. Vet. Charlotte Garot, DMV
- Ernelle Thiercy
- Solenne Dutreuil

L'auteur remercie particulièrement la Docteur Vétérinaire Charlotte Devaux pour ses relectures et ses échanges.



| -1    | Bromatologie                          |    |
|-------|---------------------------------------|----|
| 1     | Promotologio gónórgio                 | 12 |
|       | Bromatologie générale                 |    |
| 1.1   | Introduction                          | 13 |
| 1.2   | Bases de données                      | 13 |
| 1.3   | Apports nutritionnels                 | 14 |
| 1.3.1 | Humidité                              | 14 |
| 1.3.2 | Énergie                               | 15 |
| 1.3.3 | Protéines                             | 17 |
| 1.3.4 | Matières grasses                      |    |
| 1.3.5 | Minéraux et oligoéléments             |    |
| 1.3.6 | Vitamines                             | 23 |
| 1.4   | Conclusion                            | 24 |
| 1.5   | Exercice                              | 25 |
| 1.6   | Références                            | 25 |
| 2     | Bromatologie des aliments commerciaux | 29 |
| 2.1   | Introduction                          | 29 |
| 2.2   | Bases de données                      | 29 |
| 2.3   | Legislation                           | 30 |
| 2.4   | Expression des teneurs en nutriments  | 31 |

| 2.5            | Apports nutritionnels et qualité                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 31 |  |  |  |  |
|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|--|--|--|--|
| 2.5.1          | Humidité                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |    |  |  |  |  |
| 2.5.2          | Les protéines et leur qualité 5.4 Matières Grasses 5.5 Glucides et fibres 5.6 Minéraux                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |    |  |  |  |  |
| 2.5.3          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |  |  |  |  |
| 2.5.4          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |  |  |  |  |
| 2.5.5          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |  |  |  |  |
| 2.5.6          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |  |  |  |  |
| 2.5.7          | Vitamines                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |    |  |  |  |  |
| 2.6            | Le choix des aliments et la confiance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 39 |  |  |  |  |
| 2.6.1          | Proposition d'une méthode                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 40 |  |  |  |  |
| 2.7            | Conclusion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 41 |  |  |  |  |
| 2.8            | Exercices                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 41 |  |  |  |  |
| 2.9            | Références                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 41 |  |  |  |  |
| 3              | Les rations non-conventionnelles                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 45 |  |  |  |  |
| 3.1            | Introduction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 45 |  |  |  |  |
| 3.2            | Rations à base de viande crue                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 46 |  |  |  |  |
| 3.2.1          | Définitions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 46 |  |  |  |  |
| 3.2.2          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |  |  |  |  |
| 3.2.3          | and the state of t |    |  |  |  |  |
| 3.2.4          | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |    |  |  |  |  |
| 3.3            | Rations sans céréales                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |    |  |  |  |  |
| 3.3.1          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |  |  |  |  |
| 3.3.2          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |  |  |  |  |
| 3.4            | Conclusion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 52 |  |  |  |  |
| 3.5            | Exercices                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 52 |  |  |  |  |
|                | Références                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -  |  |  |  |  |
| 3.6            | References                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 52 |  |  |  |  |
| Ш              | Nutrition Physiologique                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |    |  |  |  |  |
| 4              | Les chiens de sport                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 61 |  |  |  |  |
| 4.1            | Introduction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 61 |  |  |  |  |
| 4.2            | Problématiques des différentes activités et métabolisme                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 62 |  |  |  |  |
| 4.2.1          | Métabolisme énergétique                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |    |  |  |  |  |
| 4.2.2          | Impact de l'activité sur les voies du métabolisme énergétique                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |    |  |  |  |  |
| 4.3            | Accompagnement du chien de sports                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 63 |  |  |  |  |
| 4.3.1          | Énergie                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |    |  |  |  |  |
| 4.3.1          | Glucides                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |    |  |  |  |  |
| 4.3.3          | Matières grasses                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    |  |  |  |  |
|                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |  |  |  |  |
|                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |  |  |  |  |
| 4.3.4<br>4.3.5 | Protéine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |    |  |  |  |  |

| 4.4                                                | Les aliments pour chien de sport ou de travail  | 66                         |
|----------------------------------------------------|-------------------------------------------------|----------------------------|
| 4.5                                                | Conclusion                                      | 67                         |
| 4.6                                                | Exercices                                       | 67                         |
| 4.7                                                | Références                                      | 68                         |
| Ш                                                  | Nutrition Clinique                              |                            |
| 5                                                  | Surpoids, obésité et arthrose                   | <b>75</b>                  |
| 5.1                                                | Introduction                                    | 75                         |
| 5.2                                                | Éléments généraux et épidémiologie              | 75                         |
| 5.2.1<br>5.2.2                                     | Surpoids et obésité                             |                            |
| 5.3                                                | Éléments clefs de l'accompagnement nutritionnel | 79                         |
| 5.3.1<br>5.3.2<br>5.3.3<br>5.3.4<br>5.3.5<br>5.3.6 | Détermination de l'apport énergétique           | 80<br>81<br>81<br>82<br>82 |
| 5.4                                                | Abord du propriétaire                           | 83                         |
| 5.5                                                | Aliments commerciaux                            | 85                         |
| 5.6                                                | Conclusion                                      | 87                         |
| 5.7                                                | Exercices                                       | 87                         |
| 5.8                                                | Références                                      | 87                         |
| 6                                                  | Le diabète                                      | 95                         |
| 6.1                                                | Introduction                                    | 95                         |
| 6.2                                                | Éléments généraux et épidémiologie              | 95                         |
| 6.2.1<br>6.2.2                                     | Diabète canin                                   |                            |
| 6.3                                                | Éléments clefs de l'accompagnement nutritionnel | 97                         |
| 6.3.1<br>6.3.2<br>6.3.3<br>6.3.4                   | Protéines                                       | 98<br>98                   |
| 6.4                                                | Aliments commerciaux                            | 99                         |
| 6.5                                                | Conclusion                                      | 00                         |
| 6.6                                                | Exercice                                        | 00                         |
| 6.7                                                | Références                                      | 00                         |

| 7                                        | La maladie rénale chronique                                                                                     | 105               |
|------------------------------------------|-----------------------------------------------------------------------------------------------------------------|-------------------|
| 7.1                                      | Introduction                                                                                                    | 105               |
| 7.2                                      | Éléments généraux et épidémiologie                                                                              | 105               |
| <b>7.3</b> 7.3.1 7.3.2 7.3.3 7.3.4 7.3.5 | Éléments clefs de l'accompagnement nutritionnel.  Protéines Phosphore Matières grasses Fibres Autres nutriments | 108<br>109<br>109 |
| 7.4                                      | Aliments commerciaux                                                                                            | 110               |
| 7.5                                      | Conclusion                                                                                                      | 111               |
| 7.6                                      | Exercices                                                                                                       | 112               |
| 7.7                                      | Références                                                                                                      | 113               |
| 8                                        | Les urolithiases                                                                                                | 119               |
| 8.1                                      | Introduction                                                                                                    | 119               |
| 8.2                                      | Pathogenèse                                                                                                     | 119               |
| 8.3                                      | Épidémiologie et facteurs de risques                                                                            | 120               |
| 8.3.1                                    | Oxalate de calcium                                                                                              |                   |
| 8.3.2                                    | Phosphate amoniaco-magnésien (struvite)                                                                         |                   |
| 8.3.3<br>8.3.4                           | Phosphate de calcium                                                                                            |                   |
| 8.4                                      |                                                                                                                 | 123               |
| <b>8.4</b> .1                            | Accompagnement nutritionnel  Le pH urinaire                                                                     |                   |
| 8.4.2                                    | Humidité                                                                                                        |                   |
| 8.4.3                                    | Sodium                                                                                                          |                   |
| 8.4.4                                    | Protéines                                                                                                       | 124               |
| 8.4.5                                    | Éléments particuliers                                                                                           | 125               |
| 8.5                                      | Aliments commerciaux                                                                                            | 126               |
| 8.6                                      | Conclusion                                                                                                      | 126               |
| 8.7                                      | Exercices                                                                                                       | 127               |
| 8.8                                      | Références                                                                                                      | 127               |
| 9                                        | Les affections cardiovasculaires                                                                                | 135               |
| 9.1                                      | Introduction                                                                                                    | 135               |
| 9.2                                      | Éléments généraux et épidémiologie                                                                              | 136               |
| 9.2.1                                    | Obésité                                                                                                         | 137               |
| 9.2.2                                    | Cachexie cardiaque                                                                                              | 137               |

| 9.3              | Éléments clefs de l'accompagnement nutritionnel.          | 137 |
|------------------|-----------------------------------------------------------|-----|
| 9.3.1            | Protéines                                                 | 137 |
| 9.3.2            | Matières grasses                                          | 138 |
| 9.3.3            | Sodium                                                    |     |
| 9.3.4            | Potassium et magnésium                                    |     |
| 9.3.5            | L-Carnitine                                               |     |
| 9.3.6            | Taurine                                                   |     |
| 9.3.7            | Autres nutriments                                         | 140 |
| 9.4              | Aliments commerciaux                                      | 140 |
| 9.5              | Conclusion                                                | 143 |
| 9.6              | Exercices                                                 | 143 |
| 9.7              | Références                                                | 144 |
| 10               | Affections gastriques                                     | 151 |
| 10.1             | Introduction                                              | 151 |
| 10.2             | Éléments généraux                                         | 152 |
| 10.2.1           | Les gastrites et ulcères gastriques                       | 152 |
| 10.2.2           | Les troubles de la vidange gastrique                      |     |
| 10.2.3           | Les syndromes de dilatation torsion de l'estomac          | 153 |
| 10.3             | Éléments clefs de l'accompagnement nutritionnel           | 154 |
| 10.3.1           | Jeûne                                                     | 154 |
|                  | L'humidité et la température                              |     |
| 10.3.3           | Taille des repas et vitesse de prise alimentaire          |     |
| 10.3.4           | Densité énergétique                                       |     |
| 10.3.5           | Protéines                                                 |     |
| 10.3.6<br>10.3.7 | Matières grasses                                          |     |
| 10.3.7<br>10.4   | Aliments commerciaux                                      | 156 |
| 10.4             | Conclusion                                                | 159 |
| 10.6             | Exercices                                                 | 159 |
|                  |                                                           |     |
| 10.7             | Références                                                | 160 |
| 11               | Affections intestinales et du colon                       | 167 |
| 11.1             | Introduction                                              | 167 |
| 11.2             | Éléments généraux                                         | 168 |
| 11.2.1           | Gastroentérites et entérites aigües                       | 168 |
| 11.2.2           | ·                                                         |     |
| 11.2.3           | Entéropathies avec perte de protéines et lymphangiectasie | 169 |
| 11.3             | Accompagnement nutritionnel                               | 169 |
| 11.3.1           | Jeûne                                                     | 169 |
| 11.3.2           | Digestibilité                                             | 169 |
| 11.3.3           | Protéines                                                 | 170 |

|        | Matières grasses                               |     |
|--------|------------------------------------------------|-----|
| 11.3.5 | Fibres et probiotiques                         | 172 |
| 11.4   | Aliments commerciaux                           | 173 |
| 11.5   | Conclusion                                     | 175 |
| 11.6   | Exercices                                      | 175 |
| 11.7   | Références                                     | 176 |
| 12     | Affections Cutanées                            | 187 |
| 12.1   | Introduction                                   | 187 |
| 12.2   | Éléments généraux                              | 188 |
| 12.2.1 | Carences                                       | 188 |
| 12.2.2 | Réactions cutanées à l'alimentation            | 188 |
| 12.3   | Eléments clefs de l'accompagnement alimentaire | 190 |
| 12.3.1 | Protéines                                      | 190 |
|        | Acides gras oméga 6 et 3                       |     |
|        | Zinc et cuivre                                 |     |
| 12.3.4 | Vitamines A et B                               | 192 |
| 12.4   | Les aliments commerciaux                       | 193 |
| 12.5   | Conclusion                                     | 195 |
| 12.6   | Exercices                                      | 195 |
| 12.7   | Références                                     | 195 |

# Bromatologie

|   | Bromafologie generale 13              |
|---|---------------------------------------|
| 2 | Bromatologie des aliments commerciaux |
| 3 | Les rations non-conventionnelles 45   |



Sébastien Lefebvre

## 1.1 Introduction

Ce cours de bromatologie générale a pour but de passer en revue les propriétés nutritionnelles des différentes classes bromatologiques disponibles en alimentation ménagère des carnivores domestiques ou disponibles en tant que matières premières d'aliments complets. L'attendu n'étant pas de connaître l'ensemble de ces aliments, mais d'en acquérir une vision globale. Pour se faire, le chapitre est axé sur des graphiques, le texte quant à lui propose une clef de lecture et complète les informations. Les graphiques sont, pour la plupart, présentés sous forme de rapports caloriques. Ce qui permet d'estimer la quantité de chaque nutriment apporté, si le besoin énergétique de l'animal était couvert uniquement par l'aliment en question. Cette méthode de comparaison semble plus intéressante, pour l'auteur, que celle basée sur la matière sèche.

Dans un premier temps, une présentation des bases de données utilisées dans le chapitre est réalisée avant d'étudier plus en détail les différents apports nutritionnels permis par les aliments. Il est porté à l'attention du lecteur que ce chapitre ne traite pas de l'aspect préparation des rations ménagères ni de celui de la sécurité sanitaire des aliments.

## 1.2 Bases de données

Les ingrédients d'une ration ménagère sont principalement issus d'aliments à destination de l'homme. De nombreuses bases de données sont disponibles en ligne et donnant les compositions analytiques des aliments utilisés en alimentation humaine. Pour la partie française, la base Ciqual<sup>1</sup>, de l'Agence nationale de sécurité sanitaire de l'alimentation, de l'environnement et du travail (ANSES),

regroupe les analyses de la concentration en nutriments contenus dans 2 800 aliments de consommation courante. Une des limites de cette base de données est que toutes les informations ne sont pas complétées, dont certaines données fondamentales comme l'humidité ou le taux protéique. Pour parer à ce problème, la base de données CALNUT² a été créée. La base CALNUT reprend les données de la base Ciqual quand elles sont présentes, et « complète" les données manquantes par similitude avec d'autres aliments. De plus, cette base propose une valeur aux nutriments présents en traces ou avec une valeur inférieure à un certain seuil. Ainsi, à l'inverse de la base Ciqual qui a une vocation scientifique, la base CALNUT a, dans sa définition même, l'ambition d'être utilisée dans le calcul des apports nutritionnels.

Outre atlantique, la base de référence est la base USDA<sup>3</sup> (United States Department of Agriculture). Cette dernière se démarque des bases françaises par la présence entre autres du profil partiel en acides aminés et par son ampleur (plus de 7 000 aliments standard). Attention cependant, sur le même site il est possible de trouver aussi des profils nutritionnels pour des aliments de marques (presque 240 000 produits), de l'expérience personnelle de l'auteur, la qualité de cette base est inférieure.

Dans ce chapitre, sauf mention contraire, la base Ciqual1 est utilisée, hors des profils d'acides aminés où les données de la base USDA<sup>3</sup> sont employées.Pour les données des os charnus et des carcasses, qui pour leur part ne sont pas employés en alimentation humaine, elles sont issues d'un poster d'Ellen Kienzle<sup>4</sup>.

## 1.3 Apports nutritionnels

#### 1.3.1 Humidité

Les aliments présents en ration ménagère ont la particularité, par rapport au aliment industriels, d'être, pour la plupart, des aliments humides. Cet élément est un inconvénient, car cela diminue la praticité d'une telle alimentation, notamment pour des raisons de stockage et du fait que les aliments humides sont plus difficiles à conserver. Mais, il ne faut pas, non plus, négliger les avantages inhérents à ces importants taux d'humidité : augmentation de la prise d'eau d'origine alimentaire, notamment chez le chat, et augmentation de l'appétence pour la ration.

Les taux d'humidité de certains aliments ménagers et d'os charnu sont reportés dans la Figure 1.1. Le taux d'humidité est l'un des principaux facteurs influencés lors de la cuisson. Les modes de cuisson humide ayant tendance à l'augmenter (cuisson du riz à l'eau) et les modes de cuisson secs à le diminuer (grillades). On se permettra de rappeler que les huiles étant constitué entièrement de lipides, elles ont une humidité nulle. Le beurre, quant à lui, contient de 1% (beurre concentré) à 15% (beurre doux) d'humidité. Les autres aliments avec une humidité basse, quand ils sont crus, sont les céréales (environ 10%). Les points du groupe céréales et pommes de terre hauts sur la figure 1.1 sont les pommes de terre. Les légumes sont quant à eux les aliments les plus riches en eau (hors légumes secs), avec notamment les courgettes (95% d'eau).

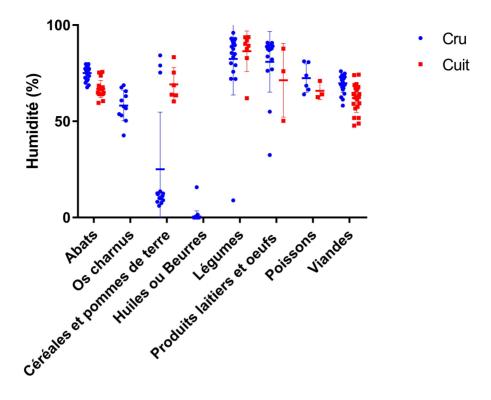



FIGURE 1.1: Taux d'humidité d'aliments ménagers crus et cuits

## 1.3.2 Énergie

L'énergie est apportée par les trois macronutriments : les protéines, les glucides (hors fibres) et les lipides. Pour calculer les densités énergétiques en énergie métabolisable, les coefficients d'Atwater sont utilisés : 4 kcal EM/g pour les glucides et les protéines et 9 kcal EM/g pour les lipides5. Il est à noter que pour le chat le coefficient pour les lipides devrait être remplacé par 8,5 kcal EM/g<sup>5</sup>. Par la suite et sauf mention contraire, l'énergie est exprimée en énergie métabolisable.

Les densités énergétiques pour cent grammes de matière sèche des différents groupes sont reprises dans la Figure 1.2. Il est intéressant de remarquer que dans un même groupe bromatologique la densité énergétique de la matière sèche est relativement stable. Pour les huiles, celle-ci est de 900 kcal EM/100g MS. Pour les produits d'origine animale, les densités sont, en moyenne, de 500 kcalEM/100g MS. Pour les céréales et les légumes, les densités énergétiques moyennes sont respectivement de 370 et 280 kcal EM/100g MS.

Une autre différence importante se situe au niveau de l'origine de cette énergie. La Figure 1.3 présente l'origine en pourcentage de l'énergie dans chaque aliment. Il est remarquable que les viandes, poissons et os charnus aient une énergie quasi exclusivement apportée par les protéines et les matières grasses. Les abats qui se détachent et contiennent un peu de glucides apportant de l'énergie sont des foies. Nonobstant certains coproduits de céréales (son de blé ou de riz), les céréales et pommes de terre ont une énergie majoritairement apportée par l'extractif non azoté (ENA).

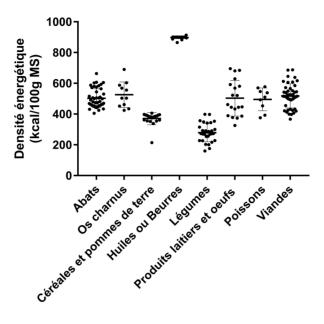



FIGURE 1.2: Densités énergétiques (énergie métabolisable) pour 100g de matière sèche, pour différents aliments ménagers.

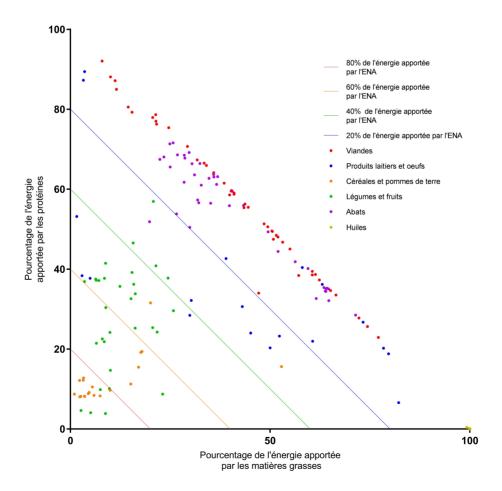



FIGURE 1.3: Origine de l'apport en énergie métabolisable de différents aliments ménagers, carcasses et os charnus

#### 1.3.3 Protéines

Les protéines sont un élément important à prendre en considération en nutrition clinique. C'est un nutriment essentiel, dont le but premier est d'apporter des acides aminés. Plus qu'un besoin en protéine, le chien et le chat ont un besoin en acides aminés. Secondairement comme nous l'avons vu précédemment les protéines sont aussi une source d'énergie non négligeable. Il est à noter que les protéines sont le groupe de nutriments avec la plus importante différence entre son énergie brute et son énergie métabolisable avec 1,7 kcal/g d'énergie en moins contre 0,4 kcal/g et 0,1 kcal/g pour respectivement les matières grasses et l'ENA<sup>5</sup>.

Pour ce qui est de l'apport d'acides aminés essentiels, deux éléments sont importants à considérer. Le premier est la quantité et le second est le ratio entre les acides aminés essentiels. Ces ratios d'acides aminés essentiels déterminent la quantité de protéine synthétisable, d'après la loi du minimum de Liebig<sup>6</sup>. La Figure 1.4 présente une métaphore de cette loi, les acides aminés essentiels étant représentés par les planches et l'eau contenue dans le tonneau symbolise le potentiel de synthèse protéique. Les conséquences de cette loi sont qu'il importe peu, pour ce qui est de la synthèse protéique, de connaître la quantité totale de protéines dans un aliment, il est nécessaire, à l'inverse, de vérifier que l'apport en chaque acide aminé est suffisant. De plus, si le ratio entre acides aminés n'est pas idéal, le surplus (planche dépassant du niveau d'eau) est éliminé par le catabolisme, ce qui entraîne une augmentation des rejets d'urée dans les urines sans gain sur la capacité de synthèse protéique<sup>7,8</sup>, avec des conséquences environnementales<sup>9</sup>, et dans le cas d'un individu atteint d'insuffisance rénale une augmentation de l'azotémie.

La Figure 1.5 présente les apports en chaque acide aminé essentiel en nombre de fois que le besoin, au sens du NRC 2006<sup>5</sup>, est couvert. La cystéine et la tyrosine étant respectivement des produits de la méthionine et de la phénylalanine, c'est la somme du produit et de son possible précurseur qui est rapportée dans ce graphique. Il est remarquable que seuls les produits d'origine animale couvrent complètement au moins deux fois le besoin en chacun des acides aminés essentiels. Les produits d'origine végétale ne contiennent pas suffisamment d'acides aminés par rapport à leur énergie. L'un des principaux manques se situe au niveau des acides aminés soufrés (méthionine et cystéines).



FIGURE 1.4: Vision métaphorique de la loi du minimum de Liebig (domaine public).

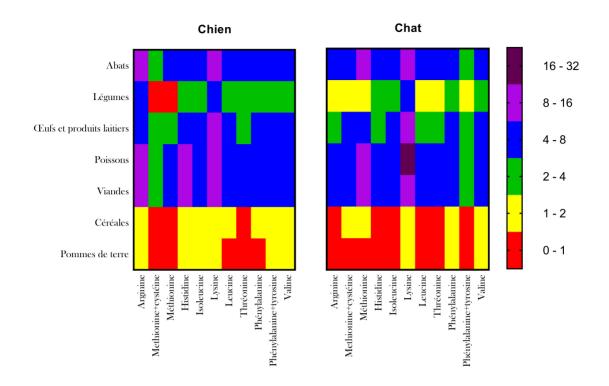



FIGURE 1.5: Moyennes des apports en acides aminés essentiels de différentes familles d'aliment en nombre de fois que le besoin (NRC, 2006) est couvert.

Quant à la Figure 1.6, elle présente un indicateur qui, de façon simplifiée, évalue l'éloignement moyen des acides aminés essentiels par rapport à l'acide aminé limitant. La définition de protéine idéale utilisée est celle de Baker<sup>10</sup>. Il est important de garder à l'esprit qu'il n'y a pas de définition consensuelle de la protéine idéale, et il serait difficile, au vu de l'ensemble des mécanismes impliqués, d'en avoir une. Ainsi, il faut prendre les analyses par rapport à la protéine idéale comme des éléments de réflexions, pouvant avoir un certain intérêt, mais veiller à ne pas baser sa réflexion au sujet des protéines uniquement sur cela. Dans la figure 6, plus la valeur est élevée plus l'écart entre l'acide aminé limitant et les autres est important. Encore une fois une nette différence s'observe entre les produits d'origine animale et les autres. Concernant les points particuliers, les trois points de la famille « céréales et pommes de terre" avec des valeurs basses sont les pommes de terre. Celles-ci sont riches en lysine et ont une protéine plutôt bien équilibrée, mais du fait de la très faible teneur de celles-ci en protéine (entre 20 et 30 g/Mcal) elles ne peuvent couvrir, en l'état, le besoin d'un chien ou d'un chat en acides aminés. Pour ce qui est des céréales, bien qu'il existe des coproduits riches en protéines (les glutens), leurs protéines sont déséquilibrées en acides aminés et sont notamment carencées en lysine. Concernant le maïs, il est, de plus, carencé en tryptophane ce qui limite l'utilisation de ses coproduits. Enfin, il est notable que certaines viandes semblent moins équilibrées que d'autres. Les viandes incriminées sont les viandes transformées. L'auteur suspecte que les analyses ont été faîtes sur des viandes contenant une quantité non négligeable de collagène (tendon) ce qui expliquerait que l'acide aminé limitant soit le tryptophane.

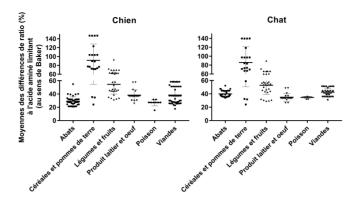



FIGURE 1.6: moyennes en pourcentage des différences des ratios par rapport à l'acide aminé limitant des autres acides aminés essentiels. La protéine idéale utilisée est celle présentée par Baker en 1991.

Un acide aminé non protéogène est aussi à prendre en considération dans l'alimentation du chien et du chat : la taurine. Chez le chien, la taurine est synthétisée à partir de la méthionine ou de la cystéine. Cependant, malgré cette capacité de production endogène, il semble que le chien ait un besoin en taurine dans certaines situations. Notamment, le chien doit recevoir une quantité suffisante en protéine totale et en acides aminés soufrés, si ces conditions ne sont pas remplies, le taux de synthèse de la taurine par le chien diminue ce qui peut engendrer une carence. Les chiens de grande taille sont particulièrement sensibles à cette chute du taux de synthèse 11-14. Concernant le chat, le besoin en taurine est strict. Les aliments riches en taurine sont les muscles striés squelettiques, les cerveaux et le cœur<sup>15</sup>. Il est remarquable que les muscles sombres du poulet soient bien plus concentrés en taurine que les clairs 15. Cependant, les modes de cuisson humides semblent être bien plus délétères que les secs sur la concentration d'un aliment en taurine 16.

## 1.3.4 Matières grasses

Hormis leur importance dans l'apport énergétique vu précédemment, les lipides ont aussi une importance physiologique par l'apport en acides gras essentiels qu'ils permettent. Pour l'importance des lipides en physiologie, vous pouvez vous reporter au cours correspondant. La Figure 1.7 rapporte la composition en acides gras oméga 6 et oméga 3 de différentes huiles et graisses. Dans le reste de cette section, le terme d'acides gras est utilisé dans un sens large. Cependant, acides gras sont majoritairement sous forme de triglycérides dans les aliments et non sous forme libre. Il est fondamental de se rappeler que les oméga 6 et 3 sont composés de différents acides gras insaturés. Ainsi, les huiles végétales sont composées uniquement d'oméga 3 et 6 en C18. Alors que, dans le règne animal, des acides gras polyinsaturés C20 et C22 sont présents, comme l'acide arachidonique (omega 6), l'acide eicosapentaénoïque (omega 3, EPA) ou l'acide docosahéxaénoïque (omega 3, DHA).

De façon générale, les matières grasses des végétaux et animaux terrestres sont plus riches en oméga 6 que 3, à l'exception notable de l'huile de lin. Pour les matières grasses d'origine marine, c'est plutôt l'inverse. Les oméga 3 des huiles de poisson sont en plus principalement composés d'EPA et de DHA.

L'huile de coco est de plus en plus utilisée, notamment du fait de sa « réputation sur internet". Elle est composée à 14% d'acides gras à chaîne moyenne (C6, C8 et C10)<sup>3,17</sup>. Ces acides gras moyens ont notamment la propriété d'augmenter la cétogénèse<sup>18</sup>. Ainsi ces triglycérides ont une utilité dans l'accompagnement diététique de la sénescence cognitive et des épilepsies du chien<sup>19,20</sup>. Ces effets et

les mécanismes sous-jacents sont abordés dans le cours s'y rapportant. Pour information, l'huile de coco est composée pour 82% d'acides gras saturés dont 41% du total est de l'acide laurique (C12). De plus, elle contient moins de 2% d'oméga 6 et moins de 0.1% d'oméga 3. Ainsi, l'huile de coco ne peut pas couvrir les besoins d'un chien ou d'un chat en acides gras essentiels.

Pour l'huile d'olive, aussi couramment employée, elle est composée majoritairement d'acide oléique (71%)1 un oméga 9 non essentiel pour le chien et le chat. Mais elle contient trop peu d'oméga 6 et 3 pour couvrir les besoins du chien ou du chat.

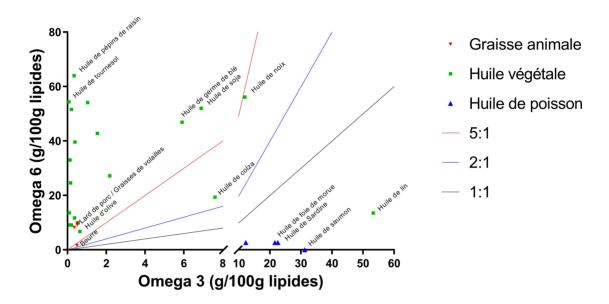



FIGURE 1.7: Concentrations des différentes matières grasses en oméga 6 et en oméga 3.

## 1.3.5 Minéraux et oligoéléments

Les minéraux et oligoéléments, bien que nécessaires, ont pour la plupart une toxicité. De plus, ce sont des nutriments qui interagissent entre eux. Ainsi, il est fondamental d'assurer un certain équilibre dans les apports en minéraux. Ici, seuls quelques nutriments sont présentés, toujours dans le but d'assurer une vision globale.

Commençons par le phosphore, une des grandes idées reçues est que la quantité de phosphore d'un aliment est dépendante de sa quantité de protéines. C'est partiellement vrai, il faudrait ajouter à cette sentence « et de son groupe bromatologique". Comme le montre la Figure 1.8, dans un même groupe bromatologique, le ratio protéines sur phosphore est à peu près constant. Ainsi, ce ratio est de 118 pour les viandes, 46 pour les fruits et légumes et jusqu'à 19 pour le groupe carcasses et os. Le groupe le plus hétérogène est celui des abats (Figure 1.9), cependant ce ratio est conservé pour un même type d'abats.

Il est important de ne pas considérer uniquement la quantité de l'apport en un nutriment, mais aussi la digestibilité de ce même nutriment. Ainsi, en prenant l'exemple du phosphore, celui contenu dans les os ainsi que celui contenu dans les céréales sont moins digestibles que celui de la viande. Cette différence de digestibilité est due à la forme du phosphore dans les aliments. Ainsi, dans les céréales, une majorité du phosphore est sous forme phytique et par conséquent non digestible par le chien et le chat<sup>21</sup>.

L'un des équilibres minéraux les plus importants est l'équilibre phosphocalcique. Un apport trop élevé en phosphore relativement au calcium pouvant conduire à une hyperparathyroïdie secondaire à l'alimentation et par conséquent à une déminéralisation osseuse<sup>22-24</sup>. La Figure 1.10 met en lumière que, hormis les carcasses et les produits laitiers, la majorité des aliments sont bien plus riches en phosphore qu'en calcium. Cependant, concernant les carcasses, des questions se posent quant à la digestibilité de leurs minéraux et aux risques, notamment chez le chat, d'un apport trop important en phosphore sur les prédispositions aux insuffisances rénales (risques à moduler en fonction de la digestibilité du phosphore)<sup>25</sup>. Enfin, les apports en carcasse impliquent aussi des apports riches en collagène. Cette protéine contient de l'hydroxyproline (10 à 13%). Or cet acide aminé augmente l'excrétion urinaire d'oxalate<sup>26,27</sup>. Ce dernier élément pouvant être délétère dans une alimentation par ailleurs riche en calcium en favorisant la formation d'urolithes d'oxalate de calcium.

Le cuivre et le zinc sont deux oligoéléments nécessaires à de nombreux systèmes enzymatiques. Ayant tous deux une forme divalente (comme de nombreux autres oligo-éléments), ils partagent un certain nombre de transporteurs, notamment membranaires comme le DMT (divalent metal transporter). Ainsi, l'excès en zinc peut aboutir à une carence en cuivre<sup>28</sup>. Le rapport idéal entre le zinc et le cuivre est de 10 pour 1. La Figure 1.11 présente les apports dans les deux métaux. Les viandes et produits laitiers sont plutôt riches en zinc et, à l'inverse, les foies sont à part, en étant très riche en cuivre. Or, le cuivre, en grande quantité, est toxique.

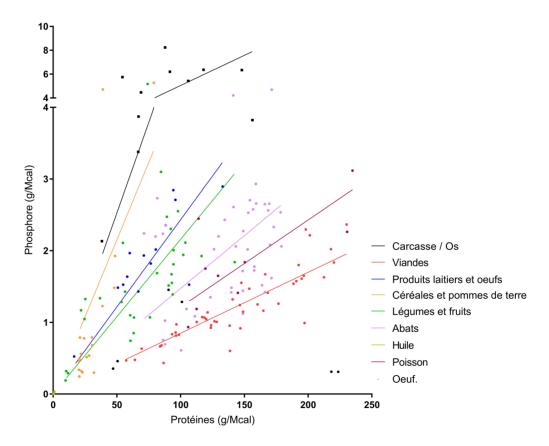



FIGURE 1.8: Apports en phosphore et en protéines de différents aliments. Pour chaque groupe bromatologique, la droite affine de régression est représentée.

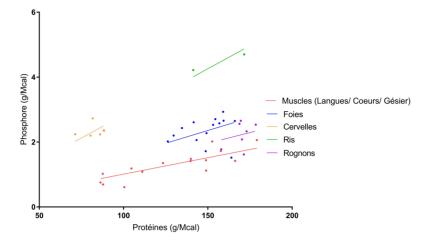



FIGURE 1.9: Apports en protéines et phosphore des différents types d'abats. Pour chaque type, la droite affine de régression est représentée.

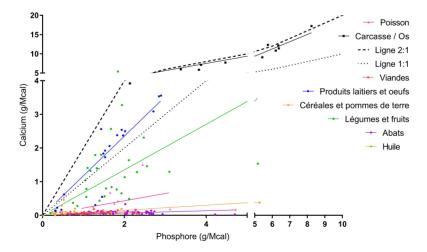
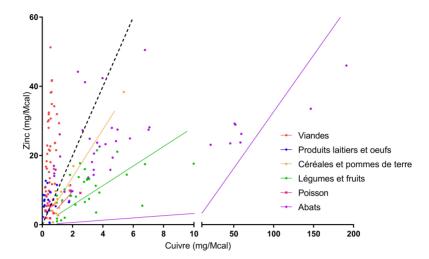
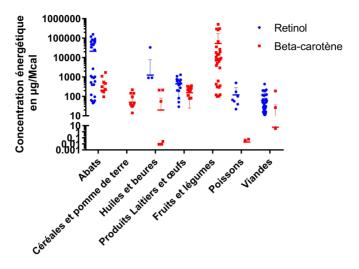
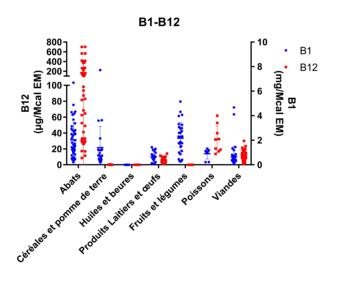



FIGURE 1.10: Apports en calcium et en phosphore de différents aliments. Pour chaque groupe bromatologique, la droite affine de régression est représentée.





FIGURE 1.11: Apports en cuivre et zinc de différents aliments. Pour chaque groupe bromatologique, la droite affine de régression est représentée.

#### 1.3.6 Vitamines


Un certain nombre de vitamines regroupent un ensemble de molécules ayant un même effet. Certaines de ces molécules sont des provitamines. Par exemple, le rétinol, le rétinal et l'acide rétinoïques ont les éléments actifs de la vitamine A alors que le  $\beta$ -carotène est une des provitamines A. Ainsi, le  $\beta$ -carotène peut avoir l'action d'une vitamine A et, moyennant un coefficient estimant le taux de transformation du  $\beta$ -carotène en rétinol, il peut être inclus dans la quantité de vitamine A disponible dans l'aliment. Cependant, même si, contrairement au chat, le  $\beta$ -carotène peut être utilisé par le chien pour former du rétinol, on ignore actuellement sont taux de transformation.

La Figure 1.12 permet de noter une grande variabilité des de la teneur en rétinol y compris dans un même groupe (échelle logarithmique). La figure souligne le fait que, contrairement au  $\beta$ -carotène qui peut être présent à la fois dans les aliments animaux et végétaux, le rétinol n'est contenu que dans les denrées d'origines animales. Les quelques points très élevés sont, dans les abats, les foies et, dans les huiles, l'huile de foie de morue. De plus, les foies sont riches en vitamine D, et cette dernière, comme la A, peut conduire à des hypervitaminoses mortelles. Ainsi, les foies doivent être ajoutés dans la ration avec parcimonie. De plus, une variabilité importante peut exister entre deux foies.

La Figure 1.12 prend l'exemple de deux autres vitamines, la B1 (thiamine) et la B12 (cobalamine). La thiamine est présente principalement dans les fruits, les légumes, certains coproduits de céréales (ici les sons) et les abats. Quant à la cobalamine, elle est exclusivement présente dans les denrées animales.



(a) Rétinol et  $\beta$ -carotène



(b) Vitamine B1 et B12

FIGURE 1.12: Teneur par rapport à l'énergie métabolisable en rétinol,  $\beta$ -carotène, vitamine B1 et Vitamine B12 de quelques aliments.

## 1.4 Conclusion

Ce chapitre descriptif donne un aperçu de la diversité des classes bromatologiques et de leurs apports. La ration ménagère a pour but d'utiliser au mieux le potentiel de chaque groupe. Cependant, ce chapitre a aussi mis en lumière certaines difficultés comme la digestibilité de certains minéraux, la variabilité de certaine teneur en vitamine, ce qui, conjugué à des risques de carence ou de toxicité,

Exercice 25

incite à compléter ces rations avec des compléments minéralovitaminés.

## 1.5 Exercice

Exercice 1.1 Guizmo est un chat mâle castré de 1 an de 5kg (NEC 3/5) nourri en une fois avec 55g de royal canin VetCare adulte pour chat. Il réclame souvent à manger.

Son propriétaire souhaite lui donner une ration ménagère.

Proposer différentes rations ménagères à partir de chacune des sources de protéines suivante :

- Steak haché 5%
- Steak haché 15%
- Colin
- Blanc de poulet
- Cuisse de poulet avec puis sans peau

1.6 Références

- [1] Table de Composition Nutritionnelle Des Aliments Ciqual 2017. Base de données, cites : TableCompositionNutritionnelle2017. Agence nationale de sécurité sanitaire de l'alimentation, de l'environnement et du travail, 2017. URL : https://ciqual.anses.fr/ (cf. page 13).
- [2] Table de Composition Nutritionnelle Ciqual Pour Le Calcul Des Apport Nutritionnels CAL-NUT 2016. Agence nationale de sécurité sanitaire de l'alimentation, de l'environnement et du travail, 2016. URL: https://ciqual.anses.fr (cf. page 14).
- [3] USDA National Nutrient Database for Standard Reference Legacy Release, April 2018. United States Department of Agriculture Agricultural Research Service, 2018. URL: https://ndb.nal.usda.gov(cf. pages 14, 19).
- [4] Nicolas KÖBER et al. "Bones and Gristle as a Source of Calcium in BARF-Rations". In: ESVCN Congress. Circncester (UK), 2017 (cf. page 14).
- [5] National Research COUNCIL. *Nutrient Requirements of Dogs and Cats.* 2006. ISBN: 978-0-309-08628-8. DOI: 10.17226/10668 (cf. pages 15, 17).
- [6] William C ROSE. "Feeding Experiments with Mixtures of Highly Purified Amino Acids I. The Inadequacy of Diets Containing Nineteen Amino Acids". In: *Journal of Biological Chemistry* 94.1 (1931), pages 155-165 (cf. page 17).
- [7] Norman JOLLIFFE et Homer W. SMITH. "The Excretion of Urine in the Dog". In: American Journal of Physiology-Legacy Content 98.4 (1er nov. 1931), pages 572-577. ISSN: 0002-9513. DOI: 10.1152/ajplegacy.1931.98.4.572 (cf. page 17).
- [8] S.E. PRATT-PHILLIPS et al. "Effect of Reduced Protein Intake on Endurance Performance and Water Turnover during Low Intensity Long Duration Exercise in Alaskan Sled Dogs". In: *Comparative Exercise Physiology* 14.1 (23 fév. 2018), pages 19-26. ISSN: 1755-2540, 1755-2559. DOI: 10.3920/CEP170024 (cf. page 17).
- [9] M. A SUTTON et al. "Ammonia Emissions from Non-Agricultural Sources in the UK". In: *Atmospheric Environment* 34.6 (1<sup>er</sup> jan. 2000), pages 855-869. ISSN: 1352-2310. DOI: 10.1016/S1352-2310(99)00362-3 (cf. page 17).

- [10] D H BAKER et G L CZARNECKI-MAULDEN. "Comparative Nutrition of Cats and Dogs". In: Annu. Rev. Nutr. 11.1 (1er juil. 1991), pages 239-263. ISSN: 0199-9885. DOI: 10.1146/annurev.nu.11.070191.001323 (cf. page 18).
- [11] Robert C. BACKUS et al. "Low Plasma Taurine Concentration in Newfoundland Dogs Is Associated with Low Plasma Methionine and Cyst(e)Ine Concentrations and Low Taurine Synthesis". In: *J. Nutr.* 136.10 (oct. 2006), pages 2525-2533. ISSN: 0022-3166. DOI: 10.1093/jn/136.10.2525. pmid: 16988121 (cf. page 19).
- [12] Kwang S. Ko et al. "Differences in Taurine Synthesis Rate among Dogs Relate to Differences in Their Maintenance Energy Requirement". In: *J Nutr* 137.5 (1<sup>er</sup> mai 2007), pages 1171-1175. ISSN: 0022-3166. DOI: 10.1093/jn/137.5.1171 (cf. page 19).
- [13] Paul D. PION et al. "Dilated Cardiomyopathy Associated with Taurine Deficiency in the Domestic Cat: Relationship to Diet and Myocardial Taurine Content". In: *Taurine: Nutritional Value and Mechanisms of Action*. Sous la direction de John B. LOMBARDINI, Stephen W. SCHAFFER et Junichi AZUMA. Advances in Experimental Medicine and Biology. Boston, MA: Springer US, 1992, pages 63-73. ISBN: 978-1-4615-3436-5. DOI: 10.1007/978-1-4615-3436-5\_8 (cf. page 19).
- [14] Sherry L. SANDERSON et al. "Effects of Dietary Fat and L-Carnitine on Plasma and Whole Blood Taurine Concentrations and Cardiac Function in Healthy Dogs Fed Protein-Restricted Diets". In: *American Journal of Veterinary Research* 62.10 (1er oct. 2001), pages 1616-1623. ISSN: 0002-9645. DOI: 10.2460/ajvr.2001.62.1616 (cf. page 19).
- [15] Sa LAIDLAW, M GROSVENOR et Jd KOPPLE. "The Taurine Content of Common Foodstuffs". In: *Journal of Parenteral and Enteral Nutrition* 14.2 (mar. 1990), pages 183-188. ISSN: 0148-6071, 1941-2444. DOI: 10.1177/0148607190014002183 (cf. page 19).
- [16] A. R. SPITZE et al. "Taurine Concentrations in Animal Feed Ingredients; Cooking Influences Taurine Content". In: *Journal of Animal Physiology and Animal Nutrition* 87.7-8 (août 2003), pages 251-262. ISSN: 0931-2439, 1439-0396. DOI: 10.1046/j.1439-0396.2003.00434. x (cf. page 19).
- [17] Berit Marten, Maria Pfeuffer et Jürgen Schrezenmeir. "Medium-Chain Triglycerides". In: *International Dairy Journal*. Technological and Health Aspects of Bioactive Components of Milk 16.11 (1<sup>er</sup> nov. 2006), pages 1374-1382. ISSN: 0958-6946. DOI: 10.1016/j.idairyj.2006.06.015 (cf. page 19).
- [18] J. M. MILES et al. "Metabolic and Neurologic Effects of an Intravenous Medium-Chain Triglyceride Emulsion". In: *Journal of Parenteral and Enteral Nutrition* 15.1 (1<sup>er</sup> jan. 1991), pages 37-41. ISSN: 1941-2444. DOI: 10.1177/014860719101500137 (cf. page 19).
- [19] Pishan CHANG et al. "Seizure Control by Derivatives of Medium Chain Fatty Acids Associated with the Ketogenic Diet Show Novel Branching-Point Structure for Enhanced Potency". In: *J Pharmacol Exp Ther* 352.1 (1er jan. 2015), pages 43-52. ISSN: 0022-3565, 1521-0103. DOI: 10.1124/jpet.114.218768. pmid: 25326131 (cf. page 19).
- [20] Yuanlong PAN et al. "Dietary Supplementation with Medium-Chain TAG Has Long-Lasting Cognition-Enhancing Effects in Aged Dogs". In: *British Journal of Nutrition* 103.12 (juin 2010), pages 1746-1754. ISSN: 1475-2662, 0007-1145. DOI: 10.1017/S0007114510000097 (cf. page 19).

Références 27

[21] B. De SMET et al. "The Influence of Supplemental Alpha-Galactosidase and Phytase in a Vegetable Ration for Dogs on the Digestibility of Organic Components and Phytate Phosphorus". In: *Journal of Animal Physiology and Animal Nutrition* 81.1 (1999), pages 1-8. ISSN: 1439-0396. DOI: 10.1046/j.1439-0396.1999.811144.x (cf. page 20).

- [22] K. KAWAGUCHI et al. "Nutritional Secondary Hyperparathyroidism Occurring in a Strain of German Shepherd Puppies". In: *Jpn. J. Vet. Res.* 41.2-4 (nov. 1993), pages 89-96. ISSN: 0047-1917. pmid: 8139162 (cf. page 21).
- [23] Frances TAYLOR-BROWN, Elsa BELTRAN et Daniel L. CHAN. "Secondary Nutritional Hyper-parathyroidism in Bengal Cats". In: *Veterinary Record* 179.11 (17 sept. 2016), pages 287-288. ISSN: 0042-4900, 2042-7670. DOI: 10.1136/vr.i4946. pmid: 27634862 (cf. page 21).
- [24] K. TOMSA et al. "Nutritional Secondary Hyperparathyroidism in Six Cats". In: *J Small Anim Pract* 40.11 (nov. 1999), pages 533-539. ISSN: 0022-4510. pmid: 10649598 (cf. page 21).
- [25] L. F. BÖSWALD, E. KIENZLE et B. DOBENECKER. "Observation about Phosphorus and Protein Supply in Cats and Dogs Prior to the Diagnosis of Chronic Kidney Disease". In: *Journal of Animal Physiology and Animal Nutrition* 102.S1 (2018), pages 31-36. ISSN: 1439-0396. DOI: 10.1111/jpn.12886 (cf. page 21).
- [26] J. C. DIJCKER et al. "The Effect of Dietary Hydroxyproline and Dietary Oxalate on Urinary Oxalate Excretion in Cats". In: *J Anim Sci* 92.2 (1<sup>er</sup> fév. 2014), pages 577-584. ISSN: 0021-8812. DOI: 10.2527/jas.2013-6178 (cf. page 21).
- [27] Tatsuya TAKAYAMA et al. "Control of Oxalate Formation from L-Hydroxyproline in Liver Mitochondria". In: *JASN* 14.4 (1<sup>er</sup> avr. 2003), pages 939-946. ISSN: 1046-6673, 1533-3450. DOI: 10.1097/01.ASN.0000059310.67812.4F. pmid: 12660328 (cf. page 21).
- [28] W. H. HENDRIKS et al. "Suspected Zinc-Induced Copper Deficiency in Growing Kittens Exposed to Galvanised Iron". In: *New Zealand Veterinary Journal* 49.2 (1er avr. 2001), pages 68-72. ISSN: 0048-0169. DOI: 10.1080/00480169.2001.36205. pmid: 16032165 (cf. page 21).



Sébastien Lefebvre

## 2.1 Introduction

Depuis les années 80, l'alimentation industrielle est devenue le mode principal d'alimentation des chiens et des chats dans les pays développés<sup>1-3</sup>. L'objectif de ce chapitre est de donner une vision d'ensemble de l'offre en alimentation commerciale, ainsi que d'introduire la méthode de choix des aliments par diagrammes. De plus, ce cours de bromatologie des aliments commerciaux permet d'aborder les notions de qualité de ces aliments et la réglementation en vigueur. Pour l'analyse des aliments, elle est limitée dans ce chapitre aux aliments physiologiques du chien et du chat adulte. De plus, seuls les aliments complets sont traités.

## 2.2 Bases de données

Il n'existe pas, à la connaissance de l'auteur, de base de données reprenant l'ensemble des aliments industriels et leur composition analytique. Pour constituer ce cours, et les graphiques y étant relatifs, l'auteur utilise par ordre de priorité : les clefs-produits de la marque, le site internet de la marque et enfin les sites de commerce en ligne. En effet, le contenu des informations présentes sur le produit (étiquette) est le plus souvent minimal (4 à 10 nutriments), et insuffisant pour vérifier les apports en certains nutriments, mais des informations complémentaires sont souvent présentes sur le site internet des marques ou leur clef-produits. Qui plus est, la vérification de l'étiquette nécessite d'avoir physiquement l'aliment.

Les clefs-produits sont le moyen le plus fiable et contenant le plus d'informations concernant les compositions analytiques d'un aliment industriel. Cependant, elles ne sont la plupart du temps mises à disposition que pour les marques dites "vétérinaires". Pour les autres marques, certaines ont, sur

leur site internet, la composition nutritionnelle des aliments qu'elles proposent. Enfin, les sites de vente en ligne sont tenus de mettre à disposition au minimum les informations légales concernant la composition de l'aliment. Cependant, de l'expérience de l'auteur de nombreuses erreurs sont présentes sur ces sites.

## 2.3 Legislation

L'aliment industriel doit répondre aux exigences de la réglementation européenne, le tableau 2.2 présente les principales réglementations en application concernant l'alimentation des animaux de compagnie.

| Sujet                                         | Références                             |
|-----------------------------------------------|----------------------------------------|
| Matière première d'origine animale            | Réglements nº 1069/2009 et nº 142/2011 |
| Hygiène                                       | Règlement nº 183/2005 (Paquet hygiène) |
| Additifs                                      | Règlement nº 1831/2003                 |
| Substances indésirables                       | Directive nº 32/2002                   |
| Mise sur le marché d'aliment                  | Règlement nº 767/2009                  |
| Objectifs nutritionnels particuliers          | Directives nº 38/2008                  |
| Règles pour la mention des matières premières | Règlement nº 1017/2017                 |
| sur l'étiquetage                              |                                        |

TABLE 2.2: Principaux textes européens s'appliquant pour les aliments destinés aux animaux.

En résumé, quelques points essentiels de la réglementation : L'article 4 du règlement nº 767/2009 présente un point important dans la responsabilisation de l'industriel. En effet, l'article précise qu'un aliment ne peut être mis sur le marché que s'il est sûr et qu'il n'a pas d'effets négatifs directs sur l'environnement ou le bien-être des animaux. Enfin second alinéa de cet article renforce aussi ce point en étendant *mutatis mutandis* les dispositions de l'article 15 du règlement nº 178/2002 à l'ensemble des aliments destinés aux animaux, ce qui implique que l'entité mettant sur le marché un aliment pour animaux doit aussi s'assurer que celui-ci est sûr pour à l'espèce humaine.

L'article 13 du règlement n° 767/2009 met en avant une limitation de l'utilisation d'allégation diététique ou de santé. Ainsi l'étiquetage " ... ne comporte pas d'allégations selon lesquelles : l'aliment possède des propriétés de prévention, de traitement ou de guérison d'une maladie...". Cependant, un aliment peut avoir des Objectifs nutritionnels particuliers (par exemple : Régulation de l'apport de glucose (Diabetes mellitus)). Dans ce cas, l'objectif nutritionnel particulier concerné, les conditions d'étiquetage et les spécificités de composition à remplir pour s'en prévaloir sont définies dans la directive n° 38/2008. Hors des cas prévus par la directive, il n'est pas autorisé d'avoir des allégations selon lesquelles l'aliment possède un objectif nutritionnel particulier. Il est important de prendre en compte que ces allégations ne sont pas soumises à une démonstration d'efficacité aliment par aliment comme pour les médicaments. Cependant pour ajouter un objectif nutritionnel particulier, il est nécessaire d'apporter les preuves que les spécifications des aliments répondent à l'objectif.

Une autre partie des règles auxquelles les fabricants sont appelés à se conformer sont les recommandations du Syndicat européen des fabricants d'aliments pour animaux de compagnie (FEDIAF). Notamment, la FEDIAF édite des recommandations nutritionnelles fixant les teneurs en nutriment qu'un aliment complet devrait avoir.

## 2.4 Expression des teneurs en nutriments

La manière d'exprimer une concentration d'un nutriment dans un aliment est fondamentale pour pouvoir comparer de manière objective les aliments. De plus, quand ces teneurs sont étudiées, il est aussi attendu de déterminer quelle quantité de tel ou tel nutriment est reçue par un animal. S'il est trivialement admis qu'il est préférable d'utiliser la teneur en matière sèche (MS) plutôt que la teneur brute. Mais, ici, nous allons proposer d'utiliser le rapport calorique plutôt que les teneurs en matière sèche.

Prenons l'exemple de deux aliments secs pour chien, le premier à une teneur de 43.1% en protéines par rapport à la matière sèche (cela pourrait être un autre nutriment), alors que le second a une teneur en protéine de 33.1%. De cette première énoncée, il semble que c'est le premier aliment qui apporte le plus de protéine à notre animal. Cependant, ces deux aliments sont-ils donnés en même quantité pour maintenir le poids du chien? Pour déterminer la quantité donnée, il est important de considérer le besoin de l'animal (que nous fixerons à 1000 kcal d'énergie métabolisable (EM)) et la densité énergétique des aliments. Le premier aliment a une densité de 410kcal EM pour 100g de matière sèche alors que le second à une densité de 285 kcal EM. Ainsi, pour apporter la même énergie de 1000kcal EM il faudra 243g MS du premier aliment et 350g MS du second. Par conséquent, avec le premier aliment le chien reçoit 104g de protéines alors qu'avec le second il reçoit 115g de protéines, soit 10% de plus. Cet exemple montre qu'il est trompeur de se fier au teneur en matière sèche. Cependant en prenant en compte la teneur de l'aliment en nutriment par rapport à son énergie ce biais est contourné. Dans notre exemple, la teneur en protéine par rapport à l'énergie est de 104g/Mcal EM et de 115 g/Mcal EM respectivement pour le premier et second aliment.

Par conséquent, dans la suite du chapitre, les teneurs en nutriments sont exprimées par rapport à l'énergie de l'aliment.

## 2.5 Apports nutritionnels et qualité

Pour les analyses de cette partie, les aliments ont été répartis en trois catégories en fonction de leurs marques : les marques internationales, les marques régionales et les marques vétérinaires. Dans les marques internationales, il est entendu les marques de grandes distributions fabricants elles-mêmes leurs aliments. Pour les marques régionales, ont étés incluses les marques délégants la fabrication de leurs aliments et/ou avec un réseau de distribution plus restreint. Les marques vétérinaires sont celles qui se présentent comme telles et qui ont un crédit plus élevé au sens de la section 2.6. De plus, les aliments de type "light" ou stérilisés ne sont pas distingués des autres. En effet, ces allégations n'ont aucune portée légale et par conséquent ne donnent aucune garantie. C'est au prescripteur de vérifier que l'aliment couvre les besoins de l'animal en prenant en compte son statut physiologique.

#### 2.5.1 Humidité

En alimentation industrielle, les deux grandes catégories d'aliments sont les aliments secs (<14% d'humidité) et les aliments humides. Les aliments humides ont généralement une teneur en humidité de 70 à 85%. Ce point est important à prendre en considération notamment dans l'estimation de la prise d'eau. Ainsi, dans le cadre d'une alimentation exclusivement sèche, l'approximation selon laquelle l'eau est apportée uniquement par la boisson est plutôt juste. Cependant dans le cadre d'une alimentation humide, il est impératif de prendre en compte l'apport en eau de l'alimentation.

## 2.5.2 Apport en énergie

L'énergie et plus particulièrement la densité énergétique est un élément fondamental en alimentation industrielle et complète. En effet, c'est cette densité qui détermine la quantité d'aliments qui est donnée. Pour calculer la densité énergétique en énergie métabolisable des aliments, la méthode FEDIAF de 2008 est utilisée dans ce chapitre, celle-ci utilise les coefficients d'Atwatter modifiés : 3.5 pour l'ENA et les protéines et 8.5 pour les lipides. L'équation FEDIAF 2008 a été choisie, car, au jour de l'écriture de ce chapitre, cette méthode est la plus employée en Europe par la FEDIAF. Cependant, le logiciel VetNutri utilise la méthode de calcul du NRC 2006(National Research Council 2006) qui est plus fiable. La méthode de calcul du NRC est présentée dans le tableau 2.4. Il est à noter que l'évolution récente de la norme volontaire EN 16967 et des "Nutritional Guidelines" de la FEDIAF qui emploient à présent la méthode du NRC, vont augmenter l'utilisation de cette dernière.

|                                 | Chien                                                                               | Chat                             |  |
|---------------------------------|-------------------------------------------------------------------------------------|----------------------------------|--|
| 1 Calcul de l'énergie brute     | EB (kcal) = $(5.7 \text{ x g prot\'eine}) + (9.4 \text{ x g mati\'eres grasses}) +$ |                                  |  |
|                                 | [4,1 x (g ENA + g cellulose brute)]                                                 |                                  |  |
| 2 Calcul de la digestibilité de | digestibilité de l'énergie (%) =                                                    | digestibilité de l'énergie (%) = |  |
| l'énergie (%)                   | 91,2 – (1,43 x % cellulose                                                          | 87,9 – (0,88 x % cellulose       |  |
|                                 | brute dans la matière sèche)                                                        | brute dans la matière sèche)     |  |
| 3 Calcul de l'énergie           | ED (kcal) = (EB x digestibilité de l'énergie (%)) / 100                             |                                  |  |
| digestible                      |                                                                                     |                                  |  |
| 4 Conversion en énergie         | EM (kcal) =ED-(1,04 x g                                                             | EM (kcal) =ED-(0,77 x g          |  |
| métabolisable                   | protéine)                                                                           | protéine)                        |  |

TABLE 2.4: Méthode de calcul de la densité énergétique (énergie métabolisable) d'un aliment industriel

Le premier élément remarquable concernant la densité énergétique (Figure 2.1) est que les marques vétérinaires dans leur ensemble offrent la plus grande diversité en termes de densité énergétique que ce soit chez le chien ou le chat. Cette disparité peut s'expliquer par l'existence de "vraies" gammes pour animaux stérilisés à côté des gammes classiques dans les marques vétérinaires. Nous entendons par "vrais" aliments stérilisés un aliment qui tout en ayant une densité énergétique moindre, apporte plus de nutriments essentiels par mégacalorie. À l'inverse, les marques internationales et régionales sont plutôt homogènes à l'exception de quelques aliments. De plus, les aliments de marques régionales à destination du chat sont sensiblement plus denses en énergie que ceux des marques internationales et vétérinaires.

Les Figures 2.2 sont aussi riches en informations au sujet du positionnement stratégique des différentes marques. Ainsi, pour les chiens, les marques régionales se distinguent par leurs pourcentages d'énergie apportée par les protéines et les lipides plus élevés que pour les deux autres catégories, ce sujet sera traité plus en détail dans la partie sur les protéines. Les sources d'énergie des marques vétérinaires et internationales sont quant à elles plus basées sur les glucides, et ont une part moins importante de l'énergie apportée par les protéines.

Concernant les aliments pour chats, la répartition est différente. Les marques vétérinaires ont une offre assez diversifiée concernant les sources d'énergie, ce qui laisse un large choix au prescripteur. Pour les marques régionales et internationales, elles se distinguent principalement par leur part d'énergie apportée par les matières grasses. Les marques régionales ayant globalement un pourcentage

d'énergie apporté par les matières grasses plus important.

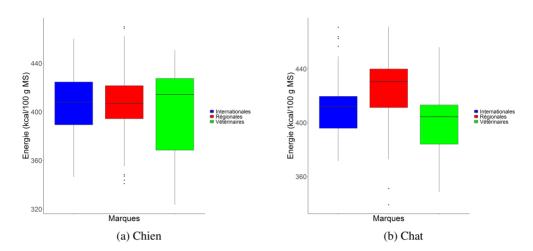



FIGURE 2.1: Densité énergétique des différents aliments par rapport à la matière sèche et selon le type de marque

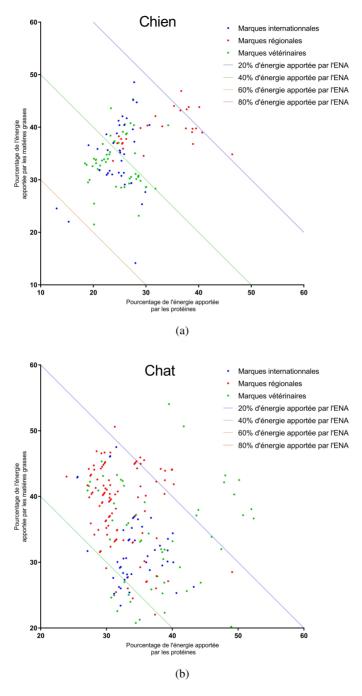



FIGURE 2.2: Origine de l'énergie métabolisable des aliments industriels pour chiens et chats de différents types de marques.

## 2.5.3 Les protéines et leur qualité

Comme présenté dans le cours de bromatologie générale, il est toujours complexe de parler de protéines. En effet, le taux en protéines d'un aliment ne nous renseigne ni sur son équilibre en acide aminé ni sur sa digestibilité. La Figure 2.3 remet en évidence la haute concentration en protéines par rapport à l'énergie des marques régionales chez le chien et celle des marques vétérinaires chez le chat par rapport aux deux autres catégories. Les protéines sont l'un des grands points sur lequel s'appuient de nombreuses marques, notamment les marques régionales chez le chien. Cet élément de mercatique s'axe sur le sophisme de l'appel à la nature : mon animal est un carnivore donc il lui faut beaucoup de protéines. Cependant, cette assertion fait fi de considérations sur l'efficacité de ces protéines. Or pour parler de besoin en protéine, il est essentiel de considérer leur digestibilité et leur valeur biologique. De plus, des protéines d'origines animales ne sont pas nécessairement synonymes de haute efficacité protéique (exemple du collagène développé dans le chapitre précédent).

Cependant, la digestibilité des protéines et leur valeur biologique ne sont fournies que par certaines marques vétérinaires, ce qui rend difficile l'interprétation de la teneur en protéines. Une autre méthode, dérivée, est de considérer le taux d'hydroxyproline dans l'aliment afin d'estimer la part de protéines de l'aliment étant du collagène. En effet, celui-ci est peu digestible et déséquilibré en acides aminés<sup>4</sup>. Cependant, encore une fois, l'hydroxyproline n'est pas disponible dans les données de l'étiquetage, pour la quasi-totalité des aliments.

L'une des meilleures méthodes pour estimer la qualité des nutriments, et plus particulièrement des protéines, est de rechercher un faisceau de preuves concordantes. Le premier indice est le prix, en effet, les ingrédients apportant des protéines de qualité sont chers, et si un aliment cher ne garantit pas une bonne qualité, un aliment à bas prix a de grandes chances d'avoir une qualité médiocre. La liste des ingrédients, souvent générique, ne donne pas beaucoup d'informations, un même nom d'ingrédient pouvant se réfèrer à des matières premières de qualité très variable<sup>5,6</sup>. Il est à noter que, depuis 2017, la mention "viande" se réfère uniquement à du muscle strié squelettique et par conséquent sans os. A l'inverse, la liste des composants analytiques fournis par le fabricant est souvent un meilleur indice. En effet plus celle-ci est importante plus le processus de contrôle qualité de l'usine l'est aussi afin de garantir l'ensemble des composants analytiques déclaré.

Enfin pour la qualité des protéines l'auteur propose un nouvel indicateur dans le cadre d'aliment physiologique de l'adulte. Cet indicateur part du constat que le rapport protéine sur phosphore est relativement constant dans une classe bromatologique (voir cours de bromatologie générale). De plus, les classes ayant des protéines à forte valeur biologique (viande, poisson, œufs, abats...) ont des rapports protéines sur phosphores élevés alors que les classes bromatologiques à faible valeur biologique (céréales, carcasses et os) ont des ratios faibles.

L'étude des ratios protéinés sur phosphore des différentes marques est présentée dans la Figure 2.4. En préambule il est important de noter que 46% des aliments de marques internationales n'indiquent pas leurs teneurs en phosphore contre 18% dans les marques régionales et 0% dans les marques vétérinaires. Pour le chien comme pour le chat, il est remarquable que les marques vétérinaires aient un rapport protéine sur phosphore plus élevé que les autres marques, ce qui laisse supposer une qualité plus élevée des protéines. De plus, les rapports sont plus élevés dans les aliments à destination du chat que dans ceux à destination du chien. Cet élément était attendu entendu que les besoins en protéines de qualité sont plus élevés chez le chat.

Il est à noter que les sources de protéines ne sont pas les seules sources de phosphore dans un aliment complet. Ainsi, dans le cadre d'un rapport protéines sur phosphore faible, il est nécessaire de se demander la raison de cette valeur : aliment avec peu de protéines nécessitant un apport en phosphore pour couvrir le besoin, présence de conservateurs riches en phosphore ou de facteurs

d'appétence utilisant du phosphore?

Enfin, outre la qualité des matières premières, il est aussi important de prendre en compte la qualité du processus de fabrication. En effet, la digestibilité des protéines en dépend directement. Par exemple, une température de trop élevée durant une étape du processus fait diminuer la digestibilité des acides aminés<sup>7</sup>. Ces informations de digestibilité n'étant pas ou rarement fournies, il est nécessaire d'analyser le crédit que l'on peut attribuer à une marque quant à la qualité de ses produits, ce point est traité dans la section 2.6.

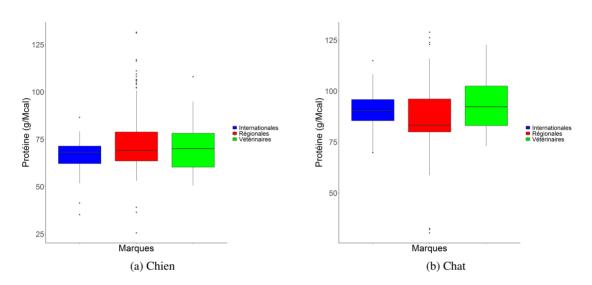



FIGURE 2.3: Rapport protidocalorique des aliments physiologiques du chien et du chat, selon le type de marque.

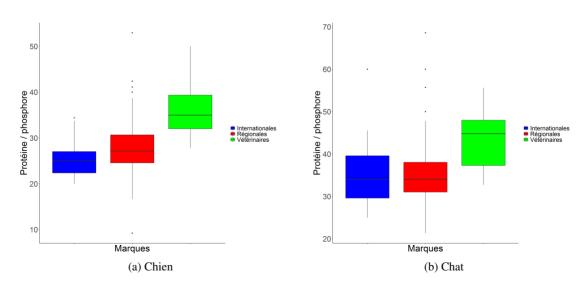



FIGURE 2.4: Rapports protéines sur phosphore des aliments chien et chat.

#### 2.5.4 Matières Grasses

Concerant les acides gras essentiels, peu de différences sont mises en évidence par la Figure 2.5 entre les différents types de marques. Cependant, une fois encore les données à notre disposition sont limitées. Très peu de marques nous donnent en détail la composition de leur oméga 6 et leur oméga 3. Or bien plus que le rapport omega 6 :omega 3, leur composition précise est importante, notamment leur répartition entre les acides gras essentiels en C18, C20 et C22. Ainsi, si le rapport omega 6 :omega 3 est utilisé largement en médecine humaine dans les études épidémiologique sur l'alimentation occidentale où il atteint des ratios de 15 :18, il n'a un rôle important que en cas d'apport insuffisant en omega 3 poly-insaturés à chaine longue (acide eicosapentaénoïque C20 :5 et acide docosahexaénoïque C22 :6)9. En cas d'apport direct de ces deux acides gras, l'effet de la balance omega 3 : omega 6 n'est plus la plus appropriée pour analyser les acides gras essentiels<sup>10</sup>.

De plus, ces composants étant très sensibles à l'oxydation il serait intéressant d'en connaître leur niveau un mois après l'ouverture du paquet et ainsi d'estimer la qualité de conservation de l'aliment, notamment dans le cadre d'aliments stockés dans des sacs non hermétiques.

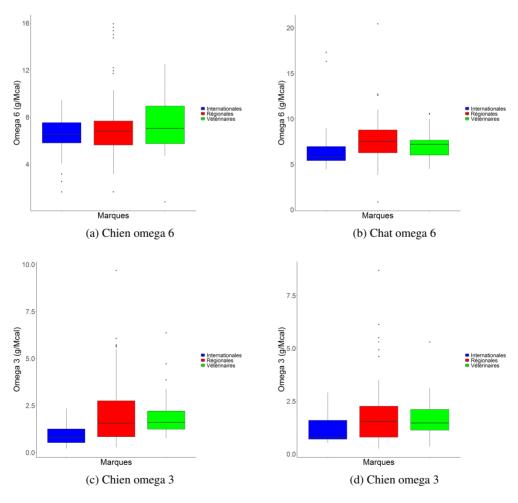



FIGURE 2.5: Teneur en acides gras essentiels Omega 6 et Omega 3 de différents aliments physiologiques du chien et du chat.

#### 2.5.5 Glucides et fibres

Actuellement, l'analyse légale des aliments pour animaux de compagnie fait intervenir l'analyse proximale de Weende. Dans cette analyse, les fibres sont analysées sou forme de cellulose brute par la méthode de Weende et les "glucides" sont déterminés par calcul de l'Extractif Non Azoté(ENA voir équation 2.1).

Or, contrairement à une pensée populaire, l'ENA ne correspond pas à la quantité d'amidon contenue dans l'aliment. Tout d'abord, en calculant ce paramètre les incertitudes de mesure des quatre autres constituants analytiques sont sommées. Ainsi, la teneur en ENA est très approximative. De plus, la cellulose brute, n'est pas un dosage adapté des fibres. En effet, la cellulose brute ne prend pas en compte les fibres solubles et mal l'hémicellulose et la lignine, qui se retrouvent intégrées dans l'ENA.

```
ENA (%)= 100-Protéines brutes(%)-Cellulose brute(%)

-Matières grasses brutes(%)-Cendres brutes(%)-Humidité(%)
```

2.1.: Equation de calcul de l'extractif non azoté.

#### 2.5.6 Minéraux

Les deux seuls minéraux dosés dans suffisamment de produits de chaque catégorie de marques, avec les différences déjà évoquées sur l'incomplétude des dosages, sont le calcium et le phosphore. La Figure 2.6 présente les teneurs en calcium et en phosphore des différents aliments. En moyenne, les aliments vétérinaires ont une teneur plus faible en calcium et en phosphore que les autres marques, et cela de manière plus évidente pour les aliments à destination du chien. De plus, la quasi-totalité des aliments a une teneur en phosphore et en calcium bien supérieur à la plus haute norme minimale de la FEDIAF. Cet élément renforce notre interprétation concernant le rapport protéines sur phosphore. En effet, au vu de ces résultats dans le cadre des aliments physiologiques, les teneurs en phosphore ne semblent pas dues à la nécessité de répondre aux normes. De plus, de récentes études semblent indiquer que la teneur en phosphore peut être bien supérieure aux normes ainsi qu'aux valeurs indiquées par le fabricant. Alors que les valeurs en calcium sont plutôt plus faibles que celles indiquées. Ces éléments aboutissent à des rapports phosphocalcique inversés pour de nombreux aliments ce qui renforce le besoin d'estimer le crédit que l'on peut avoir dans une marque comme expliqué dans la section 2.6.

Le nombre de données dans les catégories marques internationales et marques régionales étant trop faible, les oligoéléments n'ont pas été analysés. Cependant, une étude récente a mis en lumière que la majorité des aliments complets humides (65%) et une partie des aliments complets secs (30%) ne respectent pas au moins 2 recommandations européennes concernant les minéraux<sup>11</sup>. Dans notre analyse des teneurs déclarées par les fabricants, y compris pour de rares produits vétérinaires, nous avons aussi remarqué des écarts avec les recommandations FEDIAF. Ainsi, il est essentiel de vérifier l'adéquation de l'aliment avec les besoins de l'animal avant sa prescription. Enfin les produits contenant du poisson sont susceptibles d'avoir des teneurs élevées en métaux lourds<sup>11</sup>.

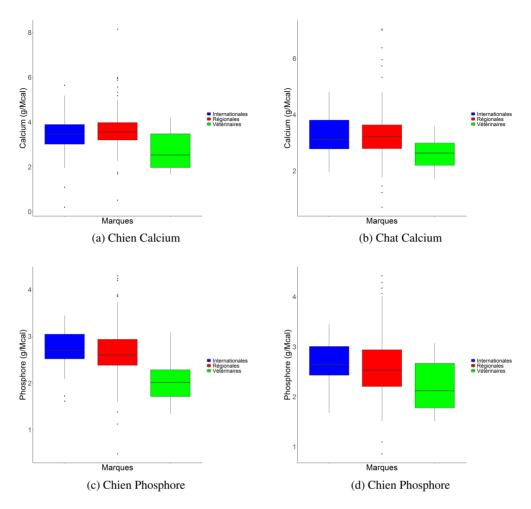



FIGURE 2.6: Teneurs en calcium et en phosphore par rapport à l'énergie de différents aliments destinés aux chiens et aux chats.

## 2.5.7 Vitamines

Le nombre de données dans les catégories marques internationales et marques régionales étant trop faible, ces nutriments n'ont pas été analysés. Il est important de ne prendre en considération que les données présentes dans la section "composants analytiques" et non sur celles des "additifs". En effet le processus de fabrication à une incidence sur la teneur finale de l'aliment en vitamines <sup>12,13</sup>. Cependant, l'auteur tient à rapporter qu'une étude de 2013 a mis en évidence de grandes variations concernant la teneur en thiamine dans des aliments humide pour chat. De plus, l'étude soulève que les aliments issus de petites entreprises ont plus tendance a avoir une teneur réduite en thiamine (y compris en dessous du seuil recommandé)<sup>14</sup>.

## 2.6 Le choix des aliments et la confiance

Tout au long de ce chapitre, nous avons vu le faible nombre d'informations fournies par certains fabricants. De même, pour un certain nombre de produits, nous avons observé que les informations

données par le fabricant étaient erronées et/ou contraires aux normes de l'autorégulation 14-17. Ainsi, l'évaluation d'un aliment ne peut se limiter à une analyse de l'étiquette, et doit aussi s'accompagner d'une analyse du crédit que l'on accorde aux informations fournies et à l'équilibre global de l'alimentation, y compris des paramètres pour lesquels aucune information n'est fournie. L'association américaine des hôpitaux pour animaux (AAHA) propose une série de questions pour évaluer la qualité d'un producteur d'aliment 18 (l'auteur a adapté ces questions) :

- Avez-vous un/une vétérinaire nutritionniste ou équivalent dans votre entreprise? Est il/elle disponible pour des questions?
- Qui formule vos aliments et quelles sont ses références?
- Quels sont vos aliments qui ont été testés et sous quel standard, avez vous effectué des études de digestibilité?
- Pouvez-vous fournir une analyse complète du profil nutritionnel de vos aliments en plus des analyses légales ?
- Testez-vous la conservation des nutriments à la fin de vie du produit?
- Où vos produits sont-ils fabriqué et par qui? L'usine peut-elle être visitée?
- Quelles recherches ont été faites sur vos produits, les résultats sont-ils disponibles dans des journaux scientifiques avec une évaluation par les pairs ?

Les informations fournies par le site internet/ brochure sont aussi à analyser au regard de la législation pour évaluer le professionnalisme de la marque :

- Les bons termes sont-ils utilisés?
- La marque se prévaut-elle d'effets thérapeutiques illégaux (prévention du cancer...)?
- Des confusions existent-elles entre les listes de constituant analytique et les additifs?

Cette première analyse permet d'estimer le crédit que l'on a dans une marque d'aliment. Si ce crédit est faible, des questions légitimes concernant la qualité des ingrédients, du processus industriel, la conservation de l'aliment et son équilibre nutritionnel peuvent se poser. Ainsi, de l'avis de l'auteur il ne faudrait pas comparer les étiquetages de deux produits auxquels on attribue un crédit trop différent. En effet, cette analyse serait alors basée sur des valeurs brutes sans prendre en compte la qualité des nutriments et l'équilibre de l'aliment, qui sont pourtant les éléments déterminants dans le choix d'un aliment.

## 2.6.1 Proposition d'une méthode

L'auteur fourni annuellement des diagrammes de comparaison des aliments commerciaux, disponibles gratuitement sur vetbrain.fr ou en version papier sur amazon sous le titre : Diagrammes des aliments du chien et du chat. Ces diagrammes ont pour but de permettre aux vétérinaires de réaliser un choix objectif. Seuls sont présents dans ces diagrammes des aliments de marques vétérinaires. En effet, au vu des indices de qualité et surtout du manque de données des autres catégories, il semble difficile à l'auteur d'inclure des aliments ayant de trop nombreuses zones d'ombre dans une démarche raisonnée.

L'utilisation des diagrammes doit se faire en 3 étapes :

- 1. Déterminer et hiérarchiser les attendus de l'alimentation en fonction du patient
- 2. A l'aide des diagrammes, classer les aliments les plus adaptés
- 3. Vérifier, à l'aide d'un logiciel, que les aliments sélectionnés répondent aux besoins de l'animal

Il est porté à l'attention du lecteur que, pour plus de lisibilité, les diagrammes sont limités aux nutriments les plus appropriés et qu'il est nécessaire de vérifier les apports concernant les autres nutriments avec un logiciel.

Conclusion 41

## 2.7 Conclusion

Bien que l'alimentation industrielle pourrait laisser penser que l'offre est uniforme, ce chapitre a montré que, dans les faits, il y a une grande diversité d'aliments industriels. Cette diversité complexifie l'analyse, mais permet aussi d'adapter l'alimentation des animaux en fonction de leurs contraintes physiologiques et environnementales propres. Cette diversité doit aussi amener le praticien à vérifier l'adéquation des aliments avec les besoins de l'animal de façon quasi systématique. De plus, afin de réaliser ce travail, il est fondamental d'avoir suffisamment de données concernant chaque aliment.

De l'avis personnel de l'auteur, l'utilisation des marques vétérinaires n'implique pas nécessairement que l'aliment soit adapté à l'animal. Cependant, l'assurance qualité et la quantité de données fournies permettent de vérifier cette adéquation, chose difficile dans les autres marques.

Enfin il est en alimentation comme ailleurs nécessaire de s'appliquer à la mesure et de se souvenir que l'équilibre tient dans un apport mesuré des différents nutriments.

Aux petits comme aux grands. Il n'est âme vivante Qui ne pèche en ceci. Rien de trop est un point Dont on parle sans cesse, et qu'on n'observe point.

Rien de trop, Livre IX, fable 11 Jean de La Fontaine

#### 2.8 Exercices

**Exercice 2.1** En fonctions des critères fournis dans la section 2.6, analysez les gammes/marques suivantes :

- Amikinos
- Orijen
- Eukanuba Veterinary Diet
- Royal Canin Vet Care

Exercice 2.2 En groupe de deux ou trois (avec observateurs le cas échéant) un étudiant prend le rôle du propriétaire, l'autre du vétérinaire.

Le vétérinaire doit conseiller le propriétaire sur l'alimentation de son animal. Aussi bien sur les quantités et la qualité de l'aliment que sur la gestion diététique de l'animal (fréquence des repas, mode d'alimentation...).

Exercice 2.3 Lire l'article Feline feeding programs : Addressing behavioural needs to improve feline health and wellbeing de Sadek<sup>19</sup>

#### 2.9 Références

[1] Dorothy P. LAFLAMME et al. "Pet Feeding Practices of Dog and Cat Owners in the United States and Australia". In: *Journal of the American Veterinary Medical Association* 232.5 (1er mar. 2008). cites: laflammePetFeedingPractices2008, pages 687-694. ISSN: 0003-1488. DOI: 10.2460/javma.232.5.687 (cf. page 29).

- [2] Linda P. CASE et al. "Chapter 26 Common Nutrition Myths and Feeding Practices". In: Canine and Feline Nutrition (THIRD EDITION). Saint Louis: Mosby, 2011, pages 277-294. ISBN: 978-0-323-06619-8. URL: http://www.sciencedirect.com/science/article/pii/B978032306619810026X (visité le 06/12/2016) (cf. page 29).
- [3] Maheeka SENEVIRATNE, Dynatra W.D. SUBASINGHE et Penny J. WATSON. "A Survey of Pet Feeding Practices of Dog Owners Visiting a Veterinary Practice in Colombo, Sri Lanka". In: *Vet Med Sci* 2.2 (1<sup>er</sup> mai 2016), pages 106-116. ISSN: 2053-1095. DOI: 10.1002/vms3.16 (cf. page 29).
- [4] Caroline DAUMAS et al. "Evaluation of Eight Commercial Dog Diets". In: *Journal of Nutritional Science* 3 (2014/ed). ISSN: 2048-6790. DOI: 10.1017/jns.2014.65 (cf. page 35).
- [5] C. M. PARSONS, F. CASTANON et Y. HAN. "Protein and Amino Acid Quality of Meat and Bone Meal". In: *Poult. Sci.* 76.2 (fév. 1997), pages 361-368. ISSN: 0032-5791. DOI: 10.1093/ps/76.2.361. pmid: 9057220 (cf. page 35).
- [6] R A DONADELLI, C K JONES et R S BEYER. "The Amino Acid Composition and Protein Quality of Various Egg, Poultry Meal by-Products, and Vegetable Proteins Used in the Production of Dog and Cat Diets". In: *Poultry Science* 98.3 (1er mar. 2019), pages 1371-1378. ISSN: 0032-5791. DOI: 10.3382/ps/pey462 (cf. page 35).
- [7] M. L. JOHNSON et al. "Effects of Species Raw Material Source, Ash Content, and Processing Temperature on Amino Acid Digestibility of Animal by-Product Meals by Cecectomized Roosters and Ileally Cannulated Dogs". In: *J Anim Sci* 76.4 (1<sup>er</sup> avr. 1998), pages 1112-1122. ISSN: 0021-8812. DOI: 10.2527/1998.7641112x (cf. page 36).
- [8] A. P SIMOPOULOS. "The Importance of the Ratio of Omega-6/Omega-3 Essential Fatty Acids". In: *Biomedicine & Pharmacotherapy* 56.8 (1er oct. 2002), pages 365-379. ISSN: 0753-3322. DOI: 10.1016/S0753-3322(02)00253-6 (cf. page 37).
- [9] N. R. RAPER, F. J. CRONIN et J. EXLER. "Omega-3 Fatty Acid Content of the US Food Supply". In: *J Am Coll Nutr* 11.3 (juin 1992), pages 304-308. ISSN: 0731-5724. DOI: 10.1080/07315724.1992.10718231. pmid: 1619182 (cf. page 37).
- [10] Heinz RUPP et al. "Risk Stratification by the "EPA+DHA Level" and the "EPA/AA Ratio"". In: *Herz* 29.7 (1<sup>er</sup> nov. 2004), pages 673-685. ISSN: 1615-6692. DOI: 10.1007/s00059-004-2602-4 (cf. page 37).
- [11] M. DAVIES et al. "Mineral Analysis of Complete Dog and Cat Foods in the UK and Compliance with European Guidelines". In: *Scientific Reports* 7.1 (7 déc. 2017), page 17107. ISSN: 2045-2322. DOI: 10.1038/s41598-017-17159-7 (cf. page 38).
- [12] Mian N. RIAZ, Muhammad ASIF et Rashida ALI. "Stability of Vitamins during Extrusion". In: *Critical Reviews in Food Science and Nutrition* 49.4 (24 fév. 2009), pages 361-368. ISSN: 1040-8398. DOI: 10.1080/10408390802067290. pmid: 19234945 (cf. page 39).
- [13] Quang D. TRAN, Wouter H. HENDRIKS et Antonius FB van der POEL. "Effects of Extrusion Processing on Nutrients in Dry Pet Food". In: *Journal of the Science of Food and Agriculture* 88.9 (2008), pages 1487-1493. ISSN: 1097-0010. DOI: 10.1002/jsfa.3247 (cf. page 39).

[14] Jessica E. MARKOVICH, Lisa M. FREEMAN et Cailin R. HEINZE. "Analysis of Thiamine Concentrations in Commercial Canned Foods Formulated for Cats". In: *Journal of the American Veterinary Medical Association* 244.2 (30 déc. 2013), pages 175-179. ISSN: 0003-1488. DOI: 10.2460/javma.244.2.175 (cf. pages 39, 40).

- [15] Ec GOSPER et al. "Discrepancy between the Composition of Some Commercial Cat Foods and Their Package Labelling and Suitability for Meeting Nutritional Requirements". In: *Aust Vet J* 94.1-2 (1<sup>er</sup> jan. 2016), pages 12-17. ISSN: 1751-0813. DOI: 10.1111/avj.12397 (cf. page 40).
- [16] Marcio A. BRUNETTO et al. "Phosphorus and Sodium Contents in Commercial Wet Foods for Dogs and Cats". In: *Veterinary Medicine and Science* 5.4 (2019), pages 494-499. ISSN: 2053-1095. DOI: 10.1002/vms3.183 (cf. page 40).
- [17] Stacie C. SUMMERS et al. "Evaluation of Phosphorus, Calcium, and Magnesium Content in Commercially Available Foods Formulated for Healthy Cats". In: *Journal of Veterinary Internal Medicine* 34.1 (2020), pages 266-273. ISSN: 1939-1676. DOI: 10.1111/jvim. 15689 (cf. page 40).
- [18] Kimberly BALDWIN et al. "AAHA Nutritional Assessment Guidelines for Dogs and Cats". In: *J Am Anim Hosp Assoc* 46.4 (2010 Jul-Aug), pages 285-296. ISSN: 1547-3317. DOI: 10.5326/0460285. pmid: 20610704 (cf. page 40).
- [19] Tammy SADEK et al. "Feline Feeding Programs: Addressing Behavioural Needs to Improve Feline Health and Wellbeing". In: *Journal of Feline Medicine and Surgery* 20.11 (1<sup>er</sup> nov. 2018), pages 1049-1055. ISSN: 1098-612X. DOI: 10.1177/1098612X18791877 (cf. page 41).



Sébastien Lefebvre

#### 3.1 Introduction

Par défiance des aliments industriels, à la suite d'informations trouvées sur internet, à des croyances, à une réflexion éthique... les propriétaires d'animaux se tournent, pour une part non négligeable, vers des rations que nous qualifierons de non conventionnelles. Cette qualification est mal définie, et regroupe plusieurs grands « types" de rations, des rations crues aux rations sans céréales en passant par les rations végétariennes. Mais, l'un des points communs à toutes ces rations est la motivation du propriétaire. Ainsi, dans le cadre des rations non conventionnelles, il y a une recherche d'alternative aux rations industrielles ou ménagères, non pas avec comme premier objectif d'avoir un apport équilibré en nutriments, mais de répondre à une certaine croyance ou orthodoxie alimentaire. Cette doctrine peut trouver son origine dans la recherche d'une alimentation plus saine ou plus adaptée à l'image que le propriétaire se fait de son animal. Ainsi, dans l'accompagnement et le conseil du propriétaire, dans l'intérêt de l'animal, il est essentiel de comprendre la base des motivations du propriétaire, afin d'identifier les leviers d'action.

En effet, la motivation derrière le choix d'une ration n'est pas toujours rationnelle. Et quand elle l'est, le raisonnement sous-jacent n'est pas toujours soutenu par des preuves scientifiques, mais, le plus souvent, par des sophismes et arguments fallacieux. La discussion avec le propriétaire peut aussi être perturbée par un effet Dunning-Kruger<sup>1</sup>, où une personne un peu compétente dans un domaine a tendance à surestimer sa compétence, quand quelqu'un de compétent à plutôt tendance a se sous-estimer. De plus, il existe un fort engagement de la part des propriétaires et des promoteurs de ce genre de pratique tenant de la conviction et laissant peu de place à l'argumentation. Par exemple, l'un des premiers articles sur l'équilibre des rations BARF en 2001<sup>2</sup> a fait l'objet de nombreuses lettres à l'éditeur<sup>3</sup>. L'un des arguments les plus avancés est que les auteurs de ces études sont "contre" ces

pratiques non conventionnelles, déplaçant ainsi la discussion du registre scientifique à celui d'opinion. De la vision de l'auteur, le conseil et l'accompagnement du propriétaire doivent se baser sur son information par la présentation de preuves apportées par la science, sans juger, ni nécessairement tenter de convaincre, ce qui est souvent contre-productif.

Ce chapitre présente les deux types de rations non conventionnelles les plus communes, celles à base de viande crue et le sans céréales. Le but de ce cours est de replacer ces types de rations dans un contexte scientifique et critique. Il est vivement conseillé au lecteur d'avoir lu les deux chapitres de bromatologie avant d'aborder celui-ci.

L'auteur a choisi de ne pas traiter dans ce chapitre de l'alimentation végétarienne. En effet, cette pratique reste assez anecdotique en nombre de cas. Bien que l'auteur déconseille fortement de nourrir un chien ou un chat avec une alimentation végétarienne compte tenu des idiosyncrasies de ces espèces, les éléments de la littérature sont actuellement insuffisants pour constituer un chapitre.

## 3.2 Rations à base de viande crue

#### 3.2.1 Définitions

Il existe plusieurs types de rations à base de viande crue, comme le BARF (*Biologically Adapted Raw Food*) ou le "whole feeding". Ces alimentations contiennent, la plupart du temps, uniquement des aliments crus. La cuisson étant accusée de détruire les nutriments (surtout les vitamines) et de diminuer la digestibilité des aliments. Le "whole feeding" vise à donner une proie entière au chien ou au chat quand le BARF est réalisé à partir de carcasses, os charnus, poisson, abats, légumes, fruits, algues...

Actuellement, ce sont les rations de type BARF qui sont les plus courantes. Ainsi, sauf mention contraire, le reste de cette section sur l'alimentation crue traitera principalement de ce type de régime.

Il est important de prendre en compte qu'il n'y ait pas un unique modèle de ration BARF. Les Rations 3.1 et 3.2 ci-dessous montrent bien la diversité qu'il peut y avoir dans cette alimentation et les conseils s'y rapportant. Ces deux rations sont proposées sur des sites internet différents, mais se présentent toutes deux comme des rations BARF. La première ration (Ration 3.1) est extrêmement déséquilibrée, malgré l'ajout d'un complément alimentaire. Il est remarquable qu'une telle ration se réclamant du BARF n'intègre ni os charnus ni abats. La seconde ration (3.2), même si elle est loin de couvrir tous les besoins (vitamine D, E, B9, oméga 3 et 6), est beaucoup mieux équilibrée. De plus, cette dernière est plus précise ce qui facilite sa mise en application et limite les interprétations malheureuses du propriétaire. Cependant, même si d'un point de vue purement calculatoire cette dernière ration est plus équilibrée, nous verrons que d'autres difficultés inhérentes au BARF peuvent se poser.

Bien qu'à l'origine les rations BARF fussent dédiées à une préparation ménagère, assez rapidement des aliments industriels BARF ont été développés. Ceux-ci prennent le plus couramment la forme de boudins sous plastiques et sont à conserver au frais ou congelés. Bien qu'une partie de l'analyse du bénéfice risque de ce type de régime soit commune au BARF industriel et à celui ménager. Chaque type de BARF peut aussi avoir des risques inhérents aux modes respectifs de sélection et préparation des matières premières, de dosage des ingrédients et de leur conservation.

```
Ration 3.1 — Ration BARF 1. (non équilibrée) pour un chien de 20kg<sup>4</sup>:
```

- Viande 320 à 480 g/jour
- Légumes 80 à 120g/jour

— Complément alimentaire GRAU Kombimix 15 g/jour

# Ration 3.2 — Ration BARF 2. (mieux équilibrée) pour un chien de 20kg<sup>5</sup> :

- Bœuf, steak haché 10% MG, cru 300 g/jour
- Foie, génisse, cru 30 g/jour
- Coeur, poulet, cru 30 g/jour
- Huile de colza 2 g/jour
- Carotte, crue 20 g/jour
- Oeuf, cru 12 g/jour
- Cuisses de poulet (avec os) 240 g/jour

# 3.2.2 Motivations des propriétaires

Une partie des motivations des propriétaires nourrissant leurs animaux avec une alimentation crue ou BARF sont proches de celles de ceux souhaitant nourrir leurs animaux avec une ration ménagère. Ainsi, il y a une volonté d'utiliser des produits non transformés et de savoir ce qui est donné à leur animal. En effet, chez les propriétaires adeptes du BARF, il existe une défiance concernant la qualité, la sécurité sanitaire et la valeur nutritionnelle ses aliments industriels. Cette défiance est plus marquée chez les propriétaires de chien (67.3% d'entre eux) que ceux de chat (37.5%)<sup>6</sup>.

A l'idée de maîtriser l'alimentation de son animal s'ajoute celle de lui fournir une alimentation plus naturelle (71.2%)<sup>6</sup>. C'est d'ailleurs la base du raisonnement d'un des fondateurs de l'alimentation BARF, le Dr Ian Billinghurst. Celui-ci est parti d'une version idéalisée de l'alimentation du loup et du chien préhistorique pour proposer un régime "naturel" à nos animaux<sup>7</sup>. Cependant, et comme il en est discuté dans la partie traitant des aliments sans céréales, ce raisonnement est fondé sur une vision fallacieuse du chien préhistorique et les sophismes courants d'appel à la nature et d'appel à l'ancienneté. Cette rhétorique renforce l'adhésion du propriétaire à ce type de régime en le faisant apparaître comme le régime logique pour son animal.

De plus, de nombreux propriétaires pensent qu'une alimentation crue est plus saine pour l'animal<sup>8</sup>. Il est notable que le constater que ce soit le constat inverse de celui des propriétaires d'animaux nourris avec des rations non crues<sup>8</sup>. L'opinion que l'alimentation BARF est plus saine est la raison majeure de l'adoption de ce type de régime par les propriétaires de chien (77.4%).

Concernant les propriétaires de chat, ce sont plutôt des ressources écrites par des vétérinaires (livre site web), mais pas leur propre vétérinaire, qui soient à l'origine de leur motivation à nourrir leur animal avec ces régimes<sup>6</sup>. Il est d'ailleurs à noter que le premier contact avec l'alimentation crue soit le plus souvent réalisé sur internet<sup>6</sup>.

L'auteur tient à signaler que dans les ressources traitant du BARF, comme le livre de la Dr Ziegler<sup>9</sup>, la remise en question de l'alimentation conventionnelle va souvent de pair avec une défiance envers le reste de la médecine vétérinaire, notamment concernant la médecine préventive. Ainsi, l'étude de Morgan et al.<sup>6</sup> met en avant le fait que les animaux nourris avec une alimentation crue sont significativement moins vaccinés (51% vs 78%), moins vermifugés (72% vs 92%) et moins traités contre les puces (60% vs 83%) que les animaux avec une ration non conventionnelle.

# 3.2.3 Avantages

Les avantages avancés par les propriétaires, comme la beauté du pelage ou la vivacité n'ont pas été décrit dans la littérature scientifique. Une étude, uniquement présentée en congrès, a montré une amélioration significative de la santé bucco dentaire des chiens nourris au BARF en conditions expérimentales par rapport à ceux nourris avec des croquettes. Cependant, cette même étude n'a mis en évidence aucune différence sur la qualité du pelage, le tartre dentaire ou la qualité des selles entre les chiens de propriétaire nourris au BARF et ceux nourris aux croquettes <sup>10</sup>. L'effet de l'alimentation crue sur le tartre peu s'expliquer par la présence d'os. En effet, une précédente étude a montré que des os crus préparés convenablement, c'est-à-dire des fémurs de bovin de taille adaptée à l'animal et où la moelle est accessible, permettent de réduire significativement le tartre dentaire de ces animaux <sup>11</sup>. Il est vraisemblable que dans la partie de l'étude portant sur des animaux de propriétaire, les os n'étaient pas préparés de cette manière <sup>10</sup>. Cet avantage est à mettre au regard du risque de corps étranger, sachant que les os sont à l'origine de la majorité des perforations dues à des corps étrangers et c'est le principal facteur de risque de complications <sup>12</sup>.

Bien que moins mis en avant par les défenseurs du BARF, les aliments ménagers raisonnablement cuits ou crus sont généralement plus digestibles que les aliments extrudés ou en boîtes. Cela a été mis en évidence chez le chat<sup>13,14</sup> et le chien<sup>15</sup>. Une des raisons avancées est la réalisation de réactions de Maillard lors du processus industriel<sup>16,17</sup>. Ces variations de digestibilité sont de quelques pour cent. De plus, il existe une grande variabilité de digestibilité des protéines parmi les aliments industriels, dépendant de la maîtrise de la fabrication et de la qualité des matières premières<sup>18</sup>. La théorie, circulant sur internet, selon laquelle les enzymes présentes dans l'aliment augmentent sa digestibilité est infirmée par les nombreuses observations montrant que la digestibilité totale et protéique d'un aliment cru est équivalente à celle d'un l'aliment cuit raisonnablement<sup>13-15,19</sup>. On notera tout de même que l'œuf cru est bien moins digestible que l'œuf cuit dû à la présence de facteurs inhibant les protéases détruits par la cuisson<sup>20</sup>.

Les effets de l'alimentation crue sur le microbiote ont aussi été évalués. Cependant, actuellement, il est difficile de conclure sur le bénéfice ou le risque consécutif de cette action. En effet, les résultats sur la diversité du microbiote intestinal entre des animaux nourris avec une ration type BARF ou un aliment industriel sont conflictuels<sup>21-23</sup>. L'une des raisons expliquant cette variation pourrait être l'utilisation de différents types de ration BARF, avec différents niveaux de fibres. Cependant, toutes s'accordent à dire que la population de *Clostridium perfringens* est significativement plus représentée chez les animaux nourrit au BARF.

#### 3.2.4 Risques et inconvénients

De même que les rations BARF partagent des éléments, notamment concernant les motivations, avec les rations ménagères, elles en partagent aussi le principal défaut : la variabilité. La première variabilité est celle de l'information. Le propriétaire se tourne le plus souvent vers internet pour établir la ration de son animal. Or, comme nous l'avons vu avec les exemples des rations 3.1 et 3.2, cet élément peut être source d'une ration déséquilibrée. Ainsi, en partant de différentes rations disponibles sur internet, Pedrinelli et ses collègues ont remarqué que 84% des rations proposées étaient déséquilibrées<sup>24</sup>. La seconde variabilité est celle du suivi de l'information. Ainsi, dans le cadre d'une prescription de ration ménagère, seuls un peu plus de 13% des propriétaires respectent la prescription<sup>25</sup>. La conjonction de ces deux éléments explique en grande partie le fait que la majorité des rations BARF données soient déséquilibrées<sup>26</sup>. Enfin, la variabilité de la qualité des matières premières est aussi à prendre en compte dans les déséquilibres. En effet, certaine matière première, comme les foies, ont des teneurs en nutriment très variables d'un individu à l'autre. Pour d'autres, comme la viande, cette variabilité peut venir de l'âge de l'animal à l'abattage ou de sa nutrition. Enfin, il y a aussi une variabilité en fonction du processus de fabrication, comme pour les viandes hachées. En effet, considérant ces dernières, moins elles sont chères plus la quantité de matières grasses et/ou de protéines de moins bonne qualité (collagène) a tendance à augmenter.

De plus, en moyenne les rations BARF sont significativement plus chères que les rations industrielles, incitant certains propriétaires à aller vers des denrées de moins bonne qualité<sup>8</sup>

Les déséquilibres des rations BARF mal préparées ont fait l'objet de nombreuses publications, en voici quelques exemples :

- Panstéatites<sup>27</sup>. Aussi appelée maladie des graisses jaunes, la panstéatite survient lors d'une alimentation carencée en vitamine E ou trop riche en acides gras polyinsaturés. Les cas rapportés dans l'article sont pour 8/10 dus à une consommation de poisson et pour 2/10 à la consommation de cervelle de porc.
- Hyperparathyroïdie secondaire à l'alimentation<sup>28-31</sup>. Cette affection est due, le plus souvent, à une alimentation déficitaire en calcium par rapport à l'apport en phosphore (rapport phosphocalcique < 1), ce qui entraine, entre autres, une déminéralisation osseuse et des perturbations du ionogramme aboutissant, en absence de traitement, à la mort de l'animal.</p>
- Hyperthyroïdie secondaire à l'alimentation<sup>32,33</sup>. Le plus souvent, elle est causée par l'ajout dans l'alimentation de cou ou de trachée dont les glandes thyroïdiennes n'ont pas été enlevées, ou dans les aliments industriels tout-viande contaminés par ces glandes.
- Hypervitaminose A<sup>34</sup>. Elle est consécutive le plus souvent d'une consommation excessive de foie.

Si les déséquilibres nutritionnels peuvent aussi survenir avec une ration ménagère mal équilibrée, la problématique majeure des rations crues réside dans le risque microbiologique qui n'est plus contenu par la cuisson des aliments. Une analyse de la littérature concernant le risque biologique à été publié récemment<sup>35</sup>. Ainsi, seuls quelques exemples seront donnés.

Il y a deux préjugés communs sur les risques bactériens en alimentation BARF: i) les aliments crus ne sont pas contaminés par des bactéries et ii) l'acidité gastrique du chien et du chat ainsi que leur vitesse de transit intestinal les protègent des affections bactériennes dues à l'alimentation. Concernant le premier point, et en prenant l'exemple du poulet, 70% de la viande de poulet crue (destinée à être cuite) disponible en consommation humaine est contaminée par *Campylobacter* et 4% l'est par *Salmonella*<sup>36</sup>. Concernant le second point, une récente étude utilisant du séquençage massif a permis d'établir un lien clair entre les bactéries contenues dans l'alimentation crue et les affections bactériennes (incluant la salmonellose) dont souffraient les chiens et chats étudiés<sup>37</sup>.

De plus, une ligne directrice de 2018 de la Commision Européenne<sup>38</sup> permet sous certaines conditions la vente d'anciennes denrées destinées à la consommation humaine comme aliment pour animaux frais. Ces produits, dont des viandes, sont souvent moins chers. Cependant, une récente étude effectuée en Italie montre des taux de contamination bactérienne élevés dans ces produits<sup>39</sup>. Cet article pointe aussi la forte prévalence des souches résistante aux antibiotiques dans ces types d'aliments.

L'alimentation BARF commerciale est, elle aussi, concernée par les contaminations. Dans une étude de 2019, plus de 50% des aliments BARF commerciaux contenaient plus de 5.000 UFC/g de bactéries<sup>40</sup>. De plus, 7% des aliments étaient positifs pour *Salmonella* et 2 aliments contenaient plus de 5.000 UFC/g de *Clostridium perfringens*. Enfin, en 2018, 6 chats ont été atteints de tuberculose à la suite de la consommation d'un aliment BARF produit par un même fabricant, 5 d'entre eux n'ont pas survécu à la maladie<sup>41</sup>.

Pour terminer, outre les risques pour l'animal, il est aussi important de prendre en considération le risque pour les humains présents dans son environnement. En effet, les animaux nourris avec une alimentation crue excrètent significativement plus de bactéries zoonotiques et cela même s'ils sont non symptomatiques<sup>35,42</sup>.

# 3.3 Rations sans céréales

Les aliments sans-céréales sont de plus en plus représentés dans l'alimentation des animaux de compagnie, notamment des chiens. Ce sont des rations industrielles (le BARF est de base sans céréales). Il y a avec ce type de ration, comme pour l'alimentation crue, la volonté de se rapprocher de l'alimentation "naturelle" de l'animal. La rhétorique des marques de croquettes sans céréales est basée sur l'association faite entre les céréales et l'amidon, d'une part, et le fait que le chien "sauvage" ne mangerait pas de céréales, d'autre part. Concernant le taux de glucides, celui des aliments sans céréales est légèrement plus bas (64  $\pm$  16 g/1000 kcal EM) que celui des aliments standards (86  $\pm$  22 g/1000 kcal EM)<sup>43</sup>. Cependant, compte tenu de l'importante diversité des taux de glucide à l'intérieur de chacune des catégories, on peut aisément trouver un aliment sans céréales contenant plus de glucides qu'un aliment standard.

L'appel à la nature se retrouve aussi souvent dans ces produits avec une variété d'ingrédients importante. Les rations 3.3 et 3.4 sont des exemples de listes d'ingrédients provenant de deux produits sans céréales courants. Tout d'abord, la longueur des listes est notable avec respectivement 50 et 36 ingrédients, contre une vingtaine pour les aliments standards. Deuxième élément notable dans ces listes, la présence d'ingrédients peu courant en alimentation du chien, comme les lentilles, les pois et diverses herbes et fruits. Ces éléments originaux, bien plus que l'absence de céréales sont à questionner au regard de l'émergence d'affections comme la cardiomyopathie dilatées potentiellement liées à l'alimentation de chien avec des aliments sans céréales.

Ration 3.3 — Ingrédients croquettes sans céréales exemple 1. Viande de poulet fraîche (13%), viande de dinde fraîche (7%), œufs entiers frais (7%), foie de poulet frais (6%), hareng entier frais (6%), plie entière fraiche (5%), foie de dinde frais (5%), cou de poulet frais (4%), cœur de poulet frais (4%), cœur de dinde frais (4%), poulet (déshydraté, 4%), dinde (déshydraté, 4%), maquereau entier (déshydraté, 4%), sardines entières (déshydratées, 4%), hareng entier (déshydraté, 4%), lentilles rouges, lentilles vertes, pois verts, fibre de lentilles, pois chiches, pois jaunes, haricots pinto, haricots ronds blancs, huile de hareng (1%), gras de poulet (1%), cartilage de poulet (1%), foie de poulet (lyophilisé), foie de dinde (lyophilisé), citrouille entière fraîche, courge musquée entière fraîche, courgettes entières fraîches, panais entiers frais, carottes fraîches, pommes red delicious entières fraîches, poires bartlett entières fraîches, chou vert frisé frais, épinards frais, feuilles de betteraves fraîches, feuilles de navet fraîches, varech brun, canneberges entières, bleuets entiers (myrtilles), baies de saskatoon entières, racine de chicorée, curcuma, chardon marie, racine de bardane, lavande, racine de guimauve, fruits de l'églantier.

Ration 3.4 — Ingrédients croquettes sans céréales exemple 2. Poulet déshydraté (25%), avoine épointée (23%), poulet frais (5%), abats de poulet frais (foie, cœur, rognons) (5%), lentilles roses, petits pois entiers, lentilles vertes, dinde fraîche (4%), œufs entiers frais (4%), gras de poulet (4%), pois chiches entiers, pois jaunes entiers, avoine entière, huile de hareng (3%), luzerne séchée au soleil, fibres de lentilles, varech brun séché, citrouille fraîche, courge musquée entière et fraîche, panais frais, chou vert frais, épinards frais, carottes entières fraîches, pommes Red Delicious fraîches, poires Bartlett fraîches, foie de poulet lyophilisé (0,1%), sel, canneberges fraîches, myrtilles (bleuets) fraîches, racine de chicorée, curcuma, chardon Marie, bardane, lavande, racine de guimauve, fruits de l'églantier.

Rations sans céréales 51

#### 3.3.1 L'alimentation "naturelle" du chien

Il est difficile de définir ce qu'est une alimentation "naturelle" pour chien. Certains ont proposé de prendre en exemple le loup<sup>44</sup>. Cependant, ce choix de dire que le chien n'est qu'un loup domestiqué et que par conséquent il devrait être nourri comme tel, si il peut être intellectuellement plaisant, conduit à dire que le chien n'a pas évolué depuis de sa domestication il y a onze à quarante mille ans. Or, les recherches sur la domestication du chien et sur l'évolution de l'alimentation du chien depuis sa domestication tendent à dire le contraire. Ainsi, bien avant la révolution néolithique, le chien s'est adapté à l'alimentation humaine, qu'il partageait<sup>45,46</sup>. Lors de l'apparition de l'agriculture à la révolution néolithique, l'alimentation du chien a suivi la même évolution que celle de l'espèce humaine vers une alimentation plus riche en céréales. Ainsi des fouilles ont mis en évidence des rations pour chien riches en céréales de l'âge de bronze, notamment celles à destination des grands chiens<sup>47</sup>. Cette mutation du régime alimentaire est accompagnée par une adaptation génétique des deux espèces à digérer l'amidon en grande quantité par la multiplication du gène AMY2B et l'adaptation de leur métabolisme énergétique des deux espèces

Ainsi, le chien n'est pas un loup domestiqué. Les milliers d'années de vie commune entre l'espèce humaine et le chien ont amené ce dernier à changer son alimentation et à adapter son métabolisme. Par conséquent, nonobstant les rares intolérances au gluten décrites chez le chien<sup>51</sup> et de proposer une alimentation équilibrée, il n'y a aucune contre-indication à la présence de céréales dans l'alimentation du chien.

# 3.3.2 Cardiomyopathie dilatée

Ces dernières années les aliments sans céréales sont suspectés d'être à l'origine de certaines cardiomyopathies dilatées (CMD) du chien. Les cas sont assez nombreux pour avoir déclenché une enquête de la *Food and Drug Administration (FDA)* américaine. Le mécanisme sous-jacent du lien entre la cardiomyopathie dilatée et l'alimentation sans céréale n'est pas encore identifié. L'hypothèse principale est une carence en taurine, du fait qu'un certain nombre de cas présentent une concentration de taurine sanguine plus basse que la moyenne et se sont améliorés avec une complémentation en taurine<sup>52</sup>. Cependant, certains résultats semblent contradictoires<sup>53</sup>. De plus, les analyses indépendantes n'ont pas mis en évidence de différence de composition analytique majeure concernant la taurine (ou ses précurseurs) entre les croquettes sans céréales et les aliments standards<sup>54</sup>. Ce résultat n'est pas surprenant. En effet, ce ne sont pas les céréales qui sont à l'origine de la taurine dans les aliments industriels.

Pour avancer dans les hypothèses, la FDA a étudié les points communs entre les différents aliments liés à des cas de CMD<sup>55</sup>. Les croquettes sans céréales représentent 91% des cas rapportés, mais le second élément commun à la grande majorité des cas est la présence de fabacée (notamment pois et lentille) dans les ingrédients de ces aliments dans 93% des cas. Cependant, peu d'études existent sur ce dernier point<sup>56</sup>.

En absence d'explication claire sur l'origine de ces cardiomyopathies, il convient de rester prudent et de se méfier des effets de mode en alimentation. Surtout quand ces modes font entrer dans les ingrédients un grand nombre de plantes dont les effets chez le chien sont mal décrits. De plus, il est remarquable que dans les premiers cas détectés de CMD début des années 2000 ce soit des croquettes avec céréales mais se réclament d'être naturelles qui en soient à l'origine<sup>57</sup>.

#### 3.4 Conclusion

Les rations non conventionnelles questionnent la pratique de la nutrition vétérinaire dans la relation au client, le lien de confiance entre le propriétaire et le vétérinaire et le rapport à l'information scientifique. De plus, les résultats présentés dans ce chapitre nous incitent aussi à une certaine prudence envers les modes alimentaires et à prêter attention aux risques qu'elles peuvent représenter pour les animaux de compagnie et pour l'homme.

#### 3.5 Exercices

Exercice 3.1 Part groupe de deux ou trois (un observateur). L'un joue le rôle d'un propriétaire convaincu que la meilleure alimentation pour son animal est le BARF/ sans céréales/ Végétarien. L'autre joue le vétérinaire. Les deux acteurs doivent discuter pendant 5 minutes. Puis les rôles sont inversés.

Le but du propriétaire est, par ses questions / affirmations, de déstabiliser le vétérinaire.

Exercice 3.2 Analyser la ration 3.2. Dans le cadre d'un berger australien entier adulte de 20 kg, faisant 3 h d'activité par jour et ne souffrant d'aucune pathologie. Puis proposez une ration type BARF (tous les aliments doivent être crus) équilibrée. Proposez des conseils pour limiter les risques pour l'animal et son environnement.

Exercice 3.3 Critiquez, en argumentant, les aliments suivant (Vous prendrez aussi en compte l'emballage et les éléments marketing) :

- Acana Classics Prairie Poultry pour Chien
- Purizon Adult poulet, poisson sans céréales pour chat

# 3.6 Références

- [1] Justin Kruger et David Dunning. "Unskilled and Unaware of It: How Difficulties in Recognizing One's Own Incompetence Lead to Inflated Self-Assessments". In: *Journal of Personality and Social Psychology* 77.6 (1999), pages 1121-1134. ISSN: 1939-1315(Electronic),0022-3514(Print). DOI: 10.1037/0022-3514.77.6.1121 (cf. page 45).
- [2] L. M. Freeman et K. E. MICHEL. "Evaluation of Raw Food Diets for Dogs". In: *J. Am. Vet. Med. Assoc.* 218.5 (1<sup>er</sup> mar. 2001), pages 705-709. ISSN: 0003-1488. DOI: 10.2460/javma. 2001.218.705. pmid: 11280399 (cf. page 45).
- [3] "Differing Opinions of Raw Food Diet Research". In: Journal of the American Veterinary Medical Association 218.10 (1er mai 2001), pages 1553-1556. ISSN: 0003-1488. DOI: 10.2460/javma.2001.218.1553 (cf. page 45).
- [4] Comment préparer une ration BARF? Le Blog. URL: https://blog.croq.fr/2015/03/30/comment-preparer-une-ration-barf/(visité le 17/11/2019) (cf. page 46).
- [5] Calculateur ration chien BARF-ASSO: Association loi 1901 visant à promouvoir l'alimentation naturelle des carnivores domestiques (chiens, chats et furets) chiens chats et furets.

  URL: http://barf-asso.fr/calculateur-ration-chien/ (visité le 17/11/2019) (cf. page 47).

[6] Stewart K. MORGAN, Susan WILLIS et Megan L. SHEPHERD. "Survey of Owner Motivations and Veterinary Input of Owners Feeding Diets Containing Raw Animal Products". In: *PeerJ* 5 (2 mar. 2017), e3031. ISSN: 2167-8359. DOI: 10.7717/peerj.3031 (cf. page 47).

- [7] Ian BILLINGHURST. *The Barf Diet: Raw Feeding for Dogs and Cats Using Evolutionary Principles*. Dogwise Publishing, 1<sup>er</sup> jan. 2001. 122 pages. ISBN: 978-1-61781-169-2 (cf. page 47).
- [8] Jennifer LENZ et al. "Perceptions, Practices, and Consequences Associated with Foodborne Pathogens and the Feeding of Raw Meat to Dogs". In: Can Vet J 50.6 (juin 2009), pages 637-643. ISSN: 0008-5286. pmid: 19721784. URL: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2684052/ (visité le 15/11/2019) (cf. pages 47, 49).
- [9] Jutta ZIEGLER. *Toxic croquettes*. Vergeze: Thierry Souccar, 22 mai 2014. 224 pages. ISBN: 978-2-36549-084-9 (cf. page 47).
- [10] Annette LIESEGANG, Monika BIERI et K. GERSTNER. "BARF Feeding: Is There an Effect on Dental Health and Fur Quality?" In: 22nd CONGRESS of the EUROPEAN SOCIETY OF VETERINARY AND COMPARATIVE NUTRITION. Munich, 8 sept. 2018, page 103 (cf. page 48).
- [11] Fr MARX et al. "Raw Beef Bones as Chewing Items to Reduce Dental Calculus in Beagle Dogs". In: *Aust Vet J* 94.1-2 (1<sup>er</sup> jan. 2016), pages 18-23. ISSN: 1751-0813. DOI: 10.1111/avj.12394 (cf. page 48).
- [12] P. GIANELLA, N. S. PFAMMATTER et I. A. BURGENER. "Oesophageal and Gastric Endoscopic Foreign Body Removal: Complications and Follow-up of 102 Dogs". In: *Journal of Small Animal Practice* 50.12 (2009), pages 649-654. ISSN: 1748-5827. DOI: 10.1111/j.1748-5827.2009.00845.x (cf. page 48).
- [13] K. R. KERR et al. "Apparent Total Tract Energy and Macronutrient Digestibility and Fecal Fermentative End-Product Concentrations of Domestic Cats Fed Extruded, Raw Beef-Based, and Cooked Beef-Based Diets". In: *J Anim Sci* 90.2 (1er fév. 2012), pages 515-522. ISSN: 0021-8812. DOI: 10.2527/jas.2010-3266 (cf. page 48).
- [14] Beth A HAMPER, Claudia A KIRK et Joseph W BARTGES. "Apparent Nutrient Digestibility of Two Raw Diets in Domestic Kittens". In: *Journal of Feline Medicine and Surgery* 18.12 (1<sup>er</sup> déc. 2016), pages 991-996. ISSN: 1098-612X. DOI: 10.1177/1098612X15605535 (cf. page 48).
- [15] Kiley M. ALGYA et al. "Apparent Total-Tract Macronutrient Digestibility, Serum Chemistry, Urinalysis, and Fecal Characteristics, Metabolites and Microbiota of Adult Dogs Fed Extruded, Mildly Cooked, and Raw Diets". In: *J Anim Sci* 96.9 (7 sept. 2018), pages 3670-3683. ISSN: 0021-8812. DOI: 10.1093/jas/sky235 (cf. page 48).
- [16] W. H. HENDRIKS et al. "Heat Processing Changes the Protein Quality of Canned Cat Foods as Measured with a Rat Bioassay". In: *J. Anim. Sci.* 77.3 (mar. 1999), pages 669-676. ISSN: 0021-8812. DOI: 10.2527/1999.773669x. pmid: 10229363 (cf. page 48).
- [17] Susie J. MEADE, Elizabeth A. REID et Juliet A. GERRARD. The Impact of Processing on the Nutritional Quality of Food Proteins. Mai 2005. URL: https://www.ingentaconnect.com/content/aoac/jaoac/2005/00000088/0000003/art00032 (visité le 17/11/2019) (cf. page 48).

- [18] Caroline DAUMAS et al. "Evaluation of Eight Commercial Dog Diets". In: *Journal of Nutritional Science* 3 (2014/ed). ISSN: 2048-6790. DOI: 10.1017/jns.2014.65 (cf. page 48).
- [19] Suzanne M. HODGKINSON et al. "Cooking Conditions Affect the True Ileal Digestible Amino Acid Content and Digestible Indispensable Amino Acid Score (DIAAS) of Bovine Meat as Determined in Pigs". In: *J Nutr* 148.10 (1er oct. 2018), pages 1564-1569. ISSN: 0022-3166. DOI: 10.1093/jn/nxy153 (cf. page 48).
- [20] H. LINEWEAVER et C. W. MURRAY. "Identification of the Trypsin Inhibitor of Egg White with Ovomucoid". In: *J. Biol. Chem.* 171.2 (déc. 1947), pages 565-581. ISSN: 0021-9258. pmid: 20272096 (cf. page 48).
- [21] Junhyung KIM et al. "Differences in the Gut Microbiota of Dogs (Canis Lupus Familiaris) Fed a Natural Diet or a Commercial Feed Revealed by the Illumina MiSeq Platform". In: *Gut Pathog* 9 (21 nov. 2017). ISSN: 1757-4749. DOI: 10.1186/s13099-017-0218-5. pmid: 29201150 (cf. page 48).
- [22] Milena SCHMIDT et al. "The Fecal Microbiome and Metabolome Differs between Dogs Fed Bones and Raw Food (BARF) Diets and Dogs Fed Commercial Diets". In: *PLOS ONE* 13.8 (15 août 2018), e0201279. ISSN: 1932-6203. DOI: 10.1371/journal.pone.0201279 (cf. page 48).
- [23] Misa SANDRI et al. "Raw Meat Based Diet Influences Faecal Microbiome and End Products of Fermentation in Healthy Dogs". In: *BMC Veterinary Research* 13.1 (28 fév. 2017), page 65. ISSN: 1746-6148. DOI: 10.1186/s12917-017-0981-z (cf. page 48).
- [24] Vivian PEDRINELLI et al. "Concentrations of Macronutrients, Minerals and Heavy Metals in Home-Prepared Diets for Adult Dogs and Cats". In: *Sci Rep* 9.1 (10 sept. 2019), pages 1-12. ISSN: 2045-2322. DOI: 10.1038/s41598-019-49087-z (cf. page 48).
- [25] L. N. JOHNSON et al. "Evaluation of Owner Experiences and Adherence to Home-Cooked Diet Recipes for Dogs". In: *J Small Anim Pract* 57.1 (1<sup>er</sup> jan. 2016), pages 23-27. ISSN: 1748-5827. DOI: 10.1111/jsap.12412 (cf. page 48).
- [26] Natalie DILLITZER, Nicola BECKER et Ellen KIENZLE. "Intake of minerals, trace elements and vitamins in bone and raw food rations in adult dogs". In: *British Journal of Nutrition* 106.S1 (oct. 2011), S53-S56. ISSN: 1475-2662, 0007-1145. DOI: 10.1017/S0007114511002765 (cf. page 48).
- [27] M.M.R.E NIZA, C.L VILELA et L.M.A FERREIRA. "Feline Pansteatitis Revisited: Hazards of Unbalanced Home-Made Diets". In: *Journal of Feline Medicine and Surgery* 5.5 (1<sup>er</sup> oct. 2003), pages 271-277. ISSN: 1098-612X. DOI: 10.1016/S1098-612X(03)00051-2 (cf. page 49).
- [28] Sarah DODD et al. "Abnormal Bone Mineralization in a Puppy Fed an Imbalanced Raw Meat Homemade Diet Diagnosed and Monitored Using Dual-Energy X-Ray Absorptiometry". In: *J Anim Physiol Anim Nutr (Berl)* (29 mai 2019). ISSN: 1439-0396. DOI: 10.1111/jpn.13118. pmid: 31144390 (cf. page 49).

[29] Moran TAL et al. "Dietary Imbalances in a Large Breed Puppy, Leading to Compression Fractures, Vitamin D Deficiency, and Suspected Nutritional Secondary Hyperparathyroidism". In: Can Vet J 59.1 (jan. 2018), pages 36-42. ISSN: 0008-5286. pmid: 29302100. URL: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5731398/ (visité le 17/11/2019) (cf. page 49).

- [30] Catherine LENOX, Iveta BECVAROVA et Wendy ARCHIPOW. "Metabolic Bone Disease and Central Retinal Degeneration in a Kitten Due to Nutritional Inadequacy of an All-Meat Raw Diet". In: *Journal of Feline Medicine and Surgery Open Reports* 1.1 (1<sup>er</sup> jan. 2015), page 2055116915579682. ISSN: 2055-1169. DOI: 10.1177/2055116915579682 (cf. page 49).
- [31] K. KAWAGUCHI et al. "Nutritional Secondary Hyperparathyroidism Occurring in a Strain of German Shepherd Puppies". In: *Jpn. J. Vet. Res.* 41.2-4 (nov. 1993), pages 89-96. ISSN: 0047-1917. pmid: 8139162 (cf. page 49).
- [32] K. KEMPKER et al. "[Alimentary thyrotoxcicosis in two dogs]." In: *Tierarztl Prax Ausg K Kleintiere Heimtiere* 45.3 (juin 2017), pages 193-198. ISSN: 1434-1239. DOI: 10.15654/TPK-160554. pmid: 28368068 (cf. page 49).
- [33] Michael R. BROOME et al. "Exogenous Thyrotoxicosis in Dogs Attributable to Consumption of All-Meat Commercial Dog Food or Treats Containing Excessive Thyroid Hormone: 14 Cases (2008–2013)". In: *Journal of the American Veterinary Medical Association* 246.1 (17 déc. 2014), pages 105-111. ISSN: 0003-1488. DOI: 10.2460/javma.246.1.105 (cf. page 49).
- [34] Zoe S. POLIZOPOULOU et al. "Hypervitaminosis A in the Cat: A Case Report and Review of the Literature". In: *J. Feline Med. Surg.* 7.6 (déc. 2005), pages 363-368. ISSN: 1098-612X. DOI: 10.1016/j.jfms.2005.05.004.pmid: 15994105 (cf. page 49).
- [35] R. H. DAVIES, J. R. LAWES et A. D. WALES. "Raw Diets for Dogs and Cats: A Review, with Particular Reference to Microbiological Hazards". In: *Journal of Small Animal Practice* 60.6 (2019), pages 329-339. ISSN: 1748-5827. DOI: 10.1111/jsap.13000 (cf. page 49).
- [36] Richard J. MELDRUM et Ian G. WILSON. "Salmonella and Campylobacter in United Kingdom Retail Raw Chicken in 2005". In: *Journal of Food Protection* 70.8 (août 2007), pages 1937-1939. ISSN: 0362-028X. DOI: 10.4315/0362-028X-70.8.1937 (cf. page 49).
- [37] Jennifer L. JONES et al. "Whole Genome Sequencing Confirms Source of Pathogens Associated with Bacterial Foodborne Illness in Pets Fed Raw Pet Food". In: *J VET Diagn Invest* 31.2 (1<sup>er</sup> mar. 2019), pages 235-240. ISSN: 1040-6387. DOI: 10.1177/1040638718823046 (cf. page 49).
- [38] European COMMISSION. Guidelines for the Feed Use of Food Nolonger Intended for Human Consumption. 2018 (cf. page 49).
- [39] Cristina BACCI et al. "Occurrence and Antimicrobial Profile of Bacterial Pathogens in Former Foodstuff Meat Products Used for Pet Diets". In: *Journal of Food Protection* 82.2 (28 jan. 2019), pages 316-324. ISSN: 0362-028X. DOI: 10.4315/0362-028X. JFP 18 352 (cf. page 49).

- [40] Josefin HELLGREN et al. "Occurrence of Salmonella, Campylobacter, Clostridium and Enterobacteriaceae in Raw Meat-Based Diets for Dogs". In: *Veterinary Record* 184.14 (6 avr. 2019), pages 442-442. ISSN: 0042-4900, 2042-7670. DOI: 10.1136/vr.105199. pmid: 30833301 (cf. page 49).
- [41] Conor O'HALLORAN et al. "Tuberculosis Due to Mycobacterium Bovis in Pet Cats Associated with Feeding a Commercial Raw Food Diet". In: *Journal of Feline Medicine and Surgery* 21.8 (1er août 2019), pages 667-681. ISSN: 1098-612X. DOI: 10.1177/1098612X19848455 (cf. page 49).
- [42] E. K. LEONARD et al. "Evaluation of Pet-Related Management Factors and the Risk of Salmonella Spp. Carriage in Pet Dogs from Volunteer Households in Ontario (2005-2006)". In: *Zoonoses Public Health* 58.2 (mar. 2011), pages 140-149. ISSN: 1863-2378. DOI: 10.1111/j.1863-2378.2009.01320.x. pmid: 20163574 (cf. page 49).
- [43] Lori R. PRANTIL, Cailin R. HEINZE et Lisa M. FREEMAN. "Comparison of Carbohydrate Content between Grain-Containing and Grain-Free Dry Cat Diets and between Reported and Calculated Carbohydrate Values". In: *J. Feline Med. Surg.* 20.4 (avr. 2018), pages 349-355. ISSN: 1532-2750. DOI: 10.1177/1098612X17710842. pmid: 28569080 (cf. page 50).
- [44] Guido BOSCH, Esther A. HAGEN-PLANTINGA et Wouter H. HENDRIKS. "Dietary Nutrient Profiles of Wild Wolves: Insights for Optimal Dog Nutrition?" In: *British Journal of Nutrition* 113.S1 (jan. 2015), S40-S54. ISSN: 0007-1145, 1475-2662. DOI: 10.1017/S0007114514002311 (cf. page 51).
- [45] Eric J. Guiry. "Dogs as Analogs in Stable Isotope-Based Human Paleodietary Reconstructions: A Review and Considerations for Future Use". In: *J Archaeol Method Theory* 19.3 (1er sept. 2012), pages 351-376. ISSN: 1573-7764. DOI: 10.1007/s10816-011-9118-z (cf. page 51).
- [46] Eric J. Guiry et Vaughan Grimes. "Domestic Dog (Canis Familiaris) Diets among Coastal Late Archaic Groups of Northeastern North America: A Case Study for the Canine Surrogacy Approach". In: *Journal of Anthropological Archaeology* 32.4 (1er déc. 2013), pages 732-745. ISSN: 0278-4165. DOI: 10.1016/j.jaa.2013.04.005 (cf. page 51).
- [47] Aurora GRANDAL-D'ANGLADE et al. "Dogs and Foxes in Early-Middle Bronze Age Funerary Structures in the Northeast of the Iberian Peninsula: Human Control of Canid Diet at the Sites of Can Roqueta (Barcelona) and Minferri (Lleida)". In: *Archaeol Anthropol Sci* (14 jan. 2019). ISSN: 1866-9565. DOI: 10.1007/s12520-019-00781-z (cf. page 51).
- [48] Erik AXELSSON et al. "The Genomic Signature of Dog Domestication Reveals Adaptation to a Starch-Rich Diet". In: *Nature* 495.7441 (mar. 2013), pages 360-364. ISSN: 1476-4687. DOI: 10.1038/nature11837 (cf. page 51).
- [49] Taylor REITER, Evelyn JAGODA et Terence D. CAPELLINI. "Dietary Variation and Evolution of Gene Copy Number among Dog Breeds". In: *PLOS ONE* 11.2 (10 fév. 2016), e0148899. ISSN: 1932-6203. DOI: 10.1371/journal.pone.0148899 (cf. page 51).
- [50] M. ARENDT et al. "Diet Adaptation in Dog Reflects Spread of Prehistoric Agriculture". In: *Heredity* 117.5 (nov. 2016), pages 301-306. ISSN: 1365-2540. DOI: 10.1038/hdy.2016.48 (cf. page 51).

[51] Oliver A. GARDEN et al. "Inheritance of Gluten-Sensitive Enteropathy in Irish Setters". In: *American Journal of Veterinary Research* 61.4 (1er avr. 2000), pages 462-468. ISSN: 0002-9645. DOI: 10.2460/ajvr.2000.61.462 (cf. page 51).

- [52] Joanna L. KAPLAN et al. "Taurine Deficiency and Dilated Cardiomyopathy in Golden Retrievers Fed Commercial Diets". In: *PLOS ONE* 13.12 (13 déc. 2018), e0209112. ISSN: 1932-6203. DOI: 10.1371/journal.pone.0209112 (cf. page 51).
- [53] Darcy ADIN et al. "Echocardiographic Phenotype of Canine Dilated Cardiomyopathy Differs Based on Diet Type". In: *Journal of Veterinary Cardiology* 21 (1<sup>er</sup> fév. 2019), pages 1-9. ISSN: 1760-2734. DOI: 10.1016/j.jvc.2018.11.002 (cf. page 51).
- [54] Center for Veterinary FDA. "Vet-LIRN Update on Investigation into Dilated Cardiomyopathy". In: FDA (Tue, 07/02/2019 19:15). URL: http://www.fda.gov/animal-veterinary/science-research/vet-lirn-update-investigation-dilated-cardiomyopathy (visité le 19/11/2019) (cf. page 51).
- [55] FDA. "FDA Investigation into Potential Link between Certain Diets and Canine Dilated Cardiomyopathy". In: FDA (Tue, 07/02/2019 19:10). URL: http://www.fda.gov/animal-veterinary/news-events/fda-investigation-potential-link-between-certain-diets-and-canine-dilated-cardiomyopathy (visité le 18/11/2019) (cf. page 51).
- [56] Wilfredo D. MANSILLA et al. "Special Topic: The Association between Pulse Ingredients and Canine Dilated Cardiomyopathy: Addressing the Knowledge Gaps before Establishing Causation". In: *J Anim Sci* 97.3 (1<sup>er</sup> mar. 2019), pages 983-997. ISSN: 0021-8812. DOI: 10.1093/jas/sky488 (cf. page 51).
- [57] Andrea J. FASCETTI et al. "Taurine Deficiency in Dogs with Dilated Cardiomyopathy: 12 Cases (1997–2001)". In: *Journal of the American Veterinary Medical Association* 223.8 (1<sup>er</sup> oct. 2003), pages 1137-1141. ISSN: 0003-1488. DOI: 10.2460/javma.2003.223.1137 (cf. page 51).

# Nutrition Physiologique



Sébastien Lefebvre

## 4.1 Introduction

L'activité physique, dans un cadre sportif et compétitif, ajoute une nouvelle dimension à l'accompagnement nutritionnel. Dans le cadre du chien de compagnie, le principal but recherché est de permettre à l'animal d'avoir la plus grande longévité, le tout en réduisant les risques d'affection et en accompagnant au mieux celles pouvant survenir. Pour l'animal de sport, il faut ajouter à cela la notion de performance sportive mais aussi de performance considérant son alimentation. L'objectif n'est plus uniquement de nourrir pour couvrir des besoins. L'objectif est de nourrir efficacement pour maximiser les performances et diminuer l'impact que l'activité intensive peut avoir sur les organismes.

Par cette recherche d'une performance et d'une efficience dans l'alimentation, avec l'espoir que cela se traduise par des résultats (ici sportif), l'alimentation de l'animal de sport se rapproche, dans sa philosophie, de celle de l'animal de production. Ainsi, il est nécessaire de connaître les mécanismes biochimiques et physiologiques qui seront soumis à rude épreuve lors de l'exercice afin d'adapter la ration pour qu'elle corresponde parfaitement aux besoins de ces systèmes.

Il est aussi essentiel de prendre en compte les motivations du propriétaire et son don degré d'investissement dans ce sport. Cette activité cynophile, est-elle exercée en qualité d'amateur ou de professionnel, un objectif de performance a-t-il été défini, quel budget temps et financier y sont consacrés? Ces éléments, en plus du type d'activité, permettront de définir les besoins de l'animal en compétition, è l'entraînement et au repos. En effet, et ces une autre particularité du chien de sport, la ration doit s'adapter aux périodes d'activité de l'animal et sera rarement la même tout au long de l'année.

Ce chapitre traite tout d'abord des particularités des différents grands types d'activités cynophiles et de leurs conséquences sur la physiologie des chiens. Une seconde partie traite de l'accompagnement

du chien de sport. Enfin, une rapide analyse des différents aliments pour chien de sport est réalisée en dernière partie.

# 4.2 Problématiques des différentes activités et métabolisme

Les activités sportives cynophiles peuvent être regroupé en trois grandes catégories : les activités de haute intensité à faible durée (courses de lévriers), celles intenses à durée modérée ou répétées (chasse...) et celles d'intensité modérée à longue durée (course de chien de traîneau. En effet, selon le type d'activité les métabolismes, les muscles et même les races utilisées ne sont pas les mêmes. De plus, la dépense énergétique associée est, elle aussi, sans commune mesure.

En effet, la dépense énergétique, qui est abordée plus tard dans le chapitre 4.3.1, est augmentée de 5 à 20 % dans le cadre d'une course de lévriers<sup>1</sup> et jusqu'à 11 fois dans le cadre d'une course de chien de traîneau [2, 3]. Cette différence d'ampleur de la dépense énergétique a aussi un impact direct sur la quantité d'aliment ingéré et par conséquent sur les apports en nutriments. Or, le besoin en nutriment n'augmente pas de la même façon que le besoin énergétique.

# 4.2.1 Métabolisme énergétique

Selon l'intensité et la durée de l'exercice physique, la source d'énergie mise en jeu et le type de métabolisme utilisé par les muscles, de même que le type de muscle favorisé ne sont pas le même. L'intensité de l'activité dépend du type d'exercice, mais aussi de l'entrainement de l'individu. En effet, un même exercice est plus intense pour un individu non entraîné.

Pour son activité, le muscle utilise de l'ATP (voir cours sur la physiologie musculaire). Cependant, la quantité d'ATP disponible dans le muscle est extrêmement limitée et permet uniquement une activité de l'ordre de la seconde. Cet ATP peut être régénéré par un stock de créatine phosphate, ce qui autorise quelques secondes d'activité supplémentaire [4]. Mais, au-delà de ces réserves d'énergie immédiatement disponibles mais ténues, il est nécessaire de régénérer l'ATP par le métabolisme énergétique en utilisant notamment la glycolyse, l'hélice de Lynen et le cycle de Krebs.

La glycolyse est souvent le premier mécanisme mis en jeu, avant que l'augmentation des paramètres cardiovasculaires permettent un apport suffisant en oxygène. Il a l'avantage de ne nécessiter que du glucose qui provient en premier lieu des réserves de la cellule sous forme de glycogène et, quand celles-ci sont épuisée, du glucose circulant. Cependant, il est à noter que la quantité de glucose disponible dans la circulation sanguine est faible. Cependant, ce mode de création d'énergie a deux inconvénients majeurs. Le premier est qu'il ne permet que de créer peu d'ATP, 2 moles par mole de glucose et 3 par mole de glycogène<sup>5</sup>. Le second est la création d'acide lactique instantanément transformé en son sel fort, le lactate. Or, les lactates sont soit métabolisés par la cellule musculaire via le cycle de Krebs, ce qui nécessite de l'oxygène, soit retransformés en glucose par le foie via le cycle de Cori, ce qui nécessite de l'ATP et un transfert des lactates par la circulation sanguine vers le foie. Ainsi, par cette difficulté d'élimination, les lactates s'accumulent ce qui conduit à une baisse du pH musculaire, aboutissant à des douleurs, mais aussi à une baisse de l'efficacité des enzymes musculaire.

Le métabolisme aérobie utilise le cycle de Krebs, il nécessite la présence d'oxygène. Les principaux substrats possibles sont le glucose après glycolyse, les acides gras après  $\beta$ -oxydation, et les acides aminés après perte de la fonction amine. Le tableau 4.2 présente la production nette d'ATP pour chacun des substrats. Le métabolisme aérobie aboutit à la formation de  $CO_2$ . Le  $CO_2$  acidifie, comparativement aux lactates, peu le milieu musculaire et est rapidement évacué par la respiration. Il est notable que les acides aminés ne soient pas une source privilégiée de substrat énergétique. En effet

leur métabolisme énergétique conduit à la formation d'ammoniac "détoxifié" par la suite en urée par le cycle de l'urée. Ce dernier cycle nécessite de l'énergie ce qui diminue le rendement énergétique de l'utilisation des acides aminés. Les acides aminés les plus utilisés à des fins énergétiques sont la leucine, l'isoleucine et la valine<sup>8-10</sup>.

| Substrat                 | Moles d'ATP produites |
|--------------------------|-----------------------|
| Glucose (glycolyse)      | 2                     |
| Glycogène (glycolyse)    | 3                     |
| Glucose (aérobie)        | 30                    |
| Acide palmitique (C16:0) | 106                   |
| acide aspartique         | 9.5                   |

TABLE 4.2: Production nette d'ATP par mole de substrat.

# 4.2.2 Impact de l'activité sur les voies du métabolisme énergétique

De façon générale, les voies métaboliques et les substrats utilisés par les muscles pour produire de l'énergie varient au cours du temps et en fonction de l'intensité de l'exercice. Pour le paramètre temps, dans les premières minutes d'exercice la glycolyse anaérobie est le principal fournisseur d'énergie, puis c'est le métabolisme aérobie d'oxydation des glucides pendant environ une heure et demie à deux heures. Pour les activités plus longues, c'est l'oxydation des acides gras qui est la source préférentielle d'énergie<sup>6,7,11,12</sup>

Pour discuter de l'intensité et des différences entre individus, la notion de Volume maximal d'oxygène (VO2max) est utilisée. La VO2max est proportionnelle à l'énergie maximale que métabolisme aérobie peut fournir à un individu. Elle augmente avec l'entraînement. Pour une intensité d'exercice supérieur à la VO2max, le métabolisme anaérobie devient essentiel, mais ne peut être utilisé longtemps. Pour une activité à moins de 30% de la VO2max l'oxydation aérobie des acides gras est le principal producteur de l'énergie musculaire, à plus de 30% jusqu'à 50% les glucides deviennent une source d'énergie importante. A plus de 75% de la VO2max, le métabolisme anaérobie devient de plus en plus important 13-15.

Ainsi, les activités de durée courte à modérée mais intense (sprint), utilisent principalement comme substrat des glucides, alors que les activités d'endurance utilisent principalement des acides gras comme substrat énergétique. De plus, l'entraînement ainsi que la race permettent d'augmenter la spécialisation des fibres musculaires dans un type d'activité. Ainsi, les lévriers Greyhound ont plus de fibres musculaires de type II (optimisé pour le métabolisme anaérobie et la puissance) que les autres races de chien<sup>16</sup>.

# 4.3 Accompagnement du chien de sports

L'accompagnement du chien de sport prend en considération les éléments énoncés précédemment pour proposer le meilleur compromis entre les différents nutriments apporté par l'alimentation.

# 4.3.1 Énergie

Le besoin énergétique est fondamental à prendre en compte dans le cadre du chien de sport. Si cette augmentation n'est que de quelques pour cent dans le cadre d'une activité intense et courte à (4

à 5% du BEE par course de lévriers<sup>17</sup>), elle est de 50 à 200% pour un chien de chasse et jusqu'à plus de 11 fois le BEE pour des chiens de traîneau<sup>18,19</sup>. La plus grande partie du besoin énergétique est due à la distance de déplacement et aux caractéristiques du terrain, mais assez peu à la vitesse.

Le besoin énergétique pour un déplacement (BED) **s'ajoute** au besoin énergétique pour un chien actif tel que le définit le NRC<sup>20</sup> ( $BEE = 130 * P^{0.75}$ ). L'équation 5.1 permet d'estimer le besoin supplémentaire nécessaire à un chien pour parcourir 1 km. On remarque que l'équation n'est pas directement proportionnelle au poids. En effet plus le chien est grand plus sa course est efficace. La seconde équation 4.2 permet de prédire la quantité d'énergie nécessaire pour parcourir 1 km avec une charge.

Besoin énergétique en déplacement BED(kcal.km<sup>-1</sup>)= 
$$1.77 * P_{animal}^{0.6} + 1.25 * P_{animal}^{0.75}$$
 (4.1)

Besoin énergétique déplacement avec poids BEDp (kcal.km<sup>-1</sup>)= 
$$BED*\frac{P_{animal}+P_{charge}}{P_{animal}}$$
 (4.2)

Il est important de considérer que le type de terrain et le dénivelé sont aussi à prendre en compte ainsi une course dans la neige, sur un terrain sableux et en pente augmente le besoin énergétique pour le déplacement.

Il est aussi nécessaire de prendre en compte le contexte de la course et le besoin énergétique pour la thermorégulation. En effet environ 80% de l'énergie utilisée par le muscle est "perdue" sous forme de chaleur et le chien doit impérativement la dissiper. Ainsi, lors de la plupart des activités physiques la température corporelle des chiens augmente jusqu'à 40 à 41 ° C<sup>21-23</sup>. Ces variations de température expliquent en partie que la plupart des activités sportives cynophiles sont organisées en hivers. Lors d'une course de chiens de traîneau, la température basse n'est pas un problème majeur (d'un point de vu énergétique) et permet la plupart du temps une bonne thermorégulation des animaux. Cependant, pour une course de plusieurs jours, si les chiens se reposent à l'extérieur ou dans un lieu ou la température est éloigné de leur zone de neutralité thermique (ce qui dépend aussi de la race), cela peut engendrer une augmentation de leur besoin énergétique en raison de la thermorégulation. Il est fondamental de se rappeler que l'eau a un rôle essentiel dans la dissipation de la chaleur du chien. Par conséquent, et encore plus qu'à l'entretien de l'eau doit toujours être disponible.

De même que pour tous les chiens, le suivi de la note d'état corporel et du poids sont les deux seuls paramètres permettant d'évaluer correctement le besoin énergétique. Dans le cas particulier des lévriers de course, une NEC inférieure à la normale est recherchée afin de limiter le poids en course.

Les grandes quantités d'énergie à apporter aux animaux sportifs sont un défi nécessitant l'utilisation de matières grasses pour augmenter la densité énergétique des rations et diminuer la taille du bolus alimentaire. Il est aussi important de prendre en compte la répartition des repas dans le temps pour limiter les risques de dilatation torsion de l'estomac. Enfin, lors d'activités hebdomadaires, il est intéressant de répartir l'augmentation de la ration sur toute la semaine. De même pour les activités irrégulières, l'augmentation de l'apport énergétique doit être progressif. Notamment, si la ration d'activité est fortement différente de la ration de repos, La transition peut nécessiter plusieurs semaines<sup>24</sup>. Dans certains cas, il est même intéressant de diminuer l'apport énergétique le jour d'une course de lévriers pour gagner quelques grammes<sup>25</sup>. Cependant cette pratique ne peut être effectuée que de façon épisodique.

#### 4.3.2 Glucides

Contrairement à l'homme, où l'endurance est en grade partie dépendante du stock de glycogène disponible<sup>26</sup>, l'endurance du chien ne dépend pas de la mobilisation de ses réserves de glycogène, mais plutôt de la mobilisation de ses acides gras<sup>27</sup>. Cependant, le métabolisme énergétique glucidique anaérobie et aérobie est, comme nous l'avons vu précédemment, fondamental pour les activités de forte intensité et de durée faible à modérée.

L'importance du glycogène dans les activités intenses a notamment été étudiée chez les lévriers de courses. Où, lors d'une course de 800 m, plus des deux tiers du glycogène est utilisé<sup>23,28</sup>. Il est important de considérer que la quantité de glycogène stockée dans les muscles ainsi que la capacité de sa mobilisation sont lié à l'entraînement de l'animal<sup>29</sup> ainsi qu'a son alimentation<sup>30</sup>.

Considérant les lévriers de courses, l'apport élevé en glucides semble essentiel. De nombreuses études ont montré que les lévriers nourris avec des taux de glucides élevés avaient de meilleurs résultats<sup>1,25,31</sup>. Ainsi, un taux de 40% d'énergie apportée par les glucides peut être conseillé pour ces activités. De plus un apport modéré en glucides , à partir de 30 minutes et jusqu'à 2 heures après la course, permet de régénérer plus rapidement le glycogène<sup>32,33</sup>. Ce dernier point peut être utilisé dans le cadre d'activités répétées sur une journée.

Bien qu'il n'y ait a priori pas d'intérêt métabolique à nourrir des chiens pour une activité d'endurance avec des glucides, un apport minimal en glucides permet de diminuer les diarrhées de stress<sup>12</sup>.

# 4.3.3 Matières grasses

Par leur densité énergétique importante et la capacité du chien à les utiliser, les matières grasses sont le nutriment de choix pour les chiens de sport d'endurance. De plus, cette augmentation de la densité de l'aliment augmente aussi sa digestibilité. Dans le cadre d'un chien d'endurance en activité, l'apport en matières grasses peut représenter jusqu'à 70% de l'énergie métabolisable, avec des augmentations ponctuelles jusqu'à 80%<sup>2,3</sup>.

Les acides gras à chaîne moyenne (C8 à C12) auraient un effet bénéfique sur l'activité. En effet, ces acides gras ne nécessitent pas de transporteur L-carnitine pour entrer dans la mitochondrie, ce qui augmenterait donc leur efficacité, de même que l'ajout de L-carnitine. Cependant, peu de preuves permettent d'appuyer ces suppositions<sup>34,35</sup>.

Même si le chien tolère plutôt bien les rations riches en matières grasses, il est nécessaire de les introduire progressivement dans l'alimentation<sup>24</sup> et de limiter les plus hauts apports en matières grasses aux périodes les plus exigeantes en énergie. De plus, avec ces rations, un apport en plus élevé en cations divalents est nécessaire (calcium, cuivre, fer, zinc, manganèse). En effet, ceux-ci peuvent être chélatés par les acides gras libres, ce qui réduit leur biodisponibilité<sup>3,13</sup>.

Si le besoin en matières grasses est très fortement augmenté, il n'en est pas de même pour le besoin en acides gras essentiels, qui n'est pas décuplé. En effet, un apport élevé en acides gras polyinsaturés, et par conséquent sensible à l'oxydation, chez un individu dont l'activité augmente la quantité de radicaux libre, peut être délétère. De plus, l'ajout d'acide gras polyinsaturés doit s'accompagner d'une supplémentation en vitamine E pour limiter l'oxydation des lipides pouvant conduire à une panstéatite<sup>36</sup>. Ainsi, une supplémentation en EPA et /ou DHA devrait être faite au regard de la clinique, notamment dans un contexte d'arthrose et en prenant en compte la quantité de vitamine E apportée par la ration.

Enfin, la capacité de pouvoir mobiliser des acides gras lors d'un exercice dépends en parti de l'alimentation, mais aussi de l'entrainement [37].

#### 4.3.4 Protéine

Le besoin en protéine d'un chien faisant en exercice est augmenté d'environ 10 à 20% soit un besoin de l'ordre de 80g/Mcal de BEE. En effet, l'augmentation de la masse musculaire et du métabolisme nécessitent un taux de remplacement plus important des protéines endogènes. Un apport insuffisant en protéines peut augmenter le risque de blessure et conduire à une diminution de la VO2max<sup>37,38</sup>.

Cependant, il est essentiel de noter que l'augmentation du besoin en protéine n'est, dans certaines activités (notamment en endurance), pas du même ordre de grandeur que celui de l'énergie. Ainsi, il faut moduler la quantité de protéines contenue dans l'aliment afin d'éviter d'apporter une quantité trop importante de protéines. En effet, cet apport excessif augmenterait le catabolisme des protéines, ce qui a un effet sur l'urémie<sup>39</sup> et la thermogenèse<sup>40</sup>. Il a été observé que des chiens de traîneau nourris avec une alimentation riche en protéines avaient plus de signes de déshydratation<sup>41</sup>. De plus, les un taux élevé de protéines réduirait (légèrement) les performances de chiens de courses<sup>42</sup>.

Ainsi, l'analyse et l'adaptation de l'apport protéique sont une clef aussi bien pour la santé que pour la performance des chiens de sport.

## 4.3.5 Vitamines E et C

Les teneurs en vitamine E et C diminuent avec l'activité<sup>43,44</sup>. Ce qui peut engendrer des risques de rhabdomyolyse en cas de manque de vitamine E. Bien qu'un apport minimum de ces vitamines, et principalement de la E est conseillé, notamment en cas d'ajout d'acides gras polyinsaturés, il semble qu'une supplémentation trop importante réduirait les performances des chiens<sup>45,46</sup>. Ce qui invite à la modération quant à ces supplémentations. Plus généralement, les effets bénéfiques de la supplémentation en diverses vitamines, minéraux ou oligoélément ne sont, pour le moment, pas décrits.

# 4.4 Les aliments pour chien de sport ou de travail

Il existe assez peu de gamme à destination du chien de sport, la plupart des marques s'arrêtant à des aliments pour chien actif. Ici, nous avons pris deux marques, dont le leader sur le chien de sport (aliment 1, 3 et 5). Pour cette première marque l'aliment 1 est destiné aux courses d'endurance, le 2 aux activités intenses de longue durée et le 3 aux activité intense de courte durée. Pour la seconde marque, l'aliment 2 est pour l'endurance et le travail, et l'aliment 4 pour l'agility et les activités intenses mais plus courtes. Il y a, de l'opinion de l'auteur, une grande différence de qualité entre les deux marques dans le design des aliments.

La figure 4.1 met en avant les différences de densité énergétique entre les aliments ayant une indication sportive différente. L'aliment à destination d'un chien faisant des courses d'endurance étant bien plus dense par rapport aux autres. La figure 4.2 montre que la principale différence sur l'origine de l'énergie des aliments 1, 3 et 5 est entre les matières grasses et l'ENA. La part d'énergie apportée par les protéines est à peu près constante.

Conclusion 67

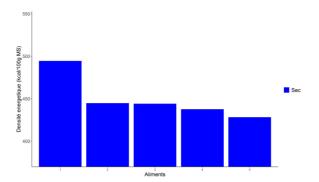



FIGURE 4.1: Densités énergétiques de quelques aliments à destination du chien sportif.




FIGURE 4.2: Origine de l'énergie de quelques aliments à destination du chien sportif.Les droites diagonales correspondent à un pourcentage de l'énergie apporté par l'ENA. La première ligne pointillée verticale correspond à RPC de 60 g/Mcal, chaque autre ligne sur la droite augmente le RPC de 25% par rapport à la précédente.

# 4.5 Conclusion

L'accompagnement nutritionnel des chien de sport doit s'adapter à l'activité du chien et à son niveau. Il est nécessaire de prendre à la fois en compte les critères de performance et de santé pour le choix d'une ration à destination de ces animaux.

## 4.6 Exercices

Exercice 4.1 Nattic est un chien de chasse beagle mâle de 12 kg (NEC 3/5, stable) stérilisé, actuellement nourri avec 250 g d'Eukanuba Active Adult Medium Breed poulet. Il chasse deux jours par semaine pendant environ 5 heures. Analysez et critiquez la ration actuelle de Nattic. Puis proposez une ration ménagère pouvant convenir à ses besoins.

Exercice 4.2 Ozalé est une femelle berger australien stérilisée de 3 ans et 23 kg (NEC 3/5, stable), active (vivant en jardin avec d'autres chiens). Elle est nourrie avec 300 g de Virbac HPM Adult.

La propriétaire d'Ozalé souhaite faire un voyage en randonnée l'été prochain avec Ozalé. Durant ce voyage, il est prévu qu'elles parcourent 30 à 40 km par jour et cela pendant 10 jours.

Estimer les besoins de Ozalé durant le voyage et conseiller la propriétaire sur la façon de le préparer, notamment considérant l'alimentation.

# 4.7 Références

- [1] Richard C. HILL et al. "Maintenance Energy Requirements and the Effect of Diet on Performance of Racing Greyhounds". In: *American Journal of Veterinary Research* 61.12 (1<sup>er</sup> déc. 2000), pages 1566-1573. ISSN: 0002-9645. DOI: 10.2460/ajvr.2000.61.1566 (cf. pages 62, 65).
- [2] James TEMPLEMAN et al. "Assessment of Current Musher Practices across the Sled Dog Industry with an Emphasis on Nutritional Programs Implemented". In: *American Journal of Animal and Veterinary Sciences* 13.1 (8 jan. 2018), pages 16-26. ISSN: 1557-4555, 1557-4563. DOI: 10.3844/ajavsp.2018.16.26 (cf. pages 62, 65).
- [3] Joseph WAKSHLAG et Justin SHMALBERG. "Nutrition for Working and Service Dogs". In: *Veterinary Clinics of North America: Small Animal Practice*. Clinical Nutrition 44.4 (1er juil. 2014), pages 719-740. ISSN: 0195-5616. DOI: 10.1016/j.cvsm.2014.03.008 (cf. pages 62, 65).
- [4] S P BESSMAN et C L CARPENTER. "The Creatine-Creatine Phosphate Energy Shuttle". In: *Annu. Rev. Biochem.* 54.1 (juin 1985), pages 831-862. ISSN: 0066-4154, 1545-4509. DOI: 10.1146/annurev.bi.54.070185.004151 (cf. page 62).
- [5] Peter McDonald et al. *Animal Nutrition*. 7<sup>e</sup> édition. Harlow, England; New York: Benjamin Cummings, mar. 2011. ISBN: 978-1-4082-0423-8 (cf. page 62).
- [6] Kenneth BLAXTER. *Energy Metabolism in Animals and Man*. CUP Archive, 29 juin 1989. 356 pages. ISBN: 978-0-521-36931-2 (cf. pages 62, 63).
- [7] Bagchi DEBASIS, Nair SREEJAYAN et Sen CHANDAN. *Nutrition and Enhanced Sports Performance*. Elsevier, 2019. ISBN: 978-0-12-813922-6. DOI: 10.1016/C2017-0-00732-2 (cf. pages 62, 63).
- [8] Alexandre Fouré et al. "Effects of Branched-Chain Amino Acids Supplementation on Both Plasma Amino Acids Concentration and Muscle Energetics Changes Resulting from Muscle Damage: A Randomized Placebo Controlled Trial". In: *Clinical Nutrition* 35.1 (1<sup>er</sup> fév. 2016), pages 83-94. ISSN: 0261-5614. DOI: 10.1016/j.clnu.2015.03.014 (cf. page 63).
- [9] E. BLOMSTRAND, F. CELSING et E. A. NEWSHOLME. "Changes in Plasma Concentrations of Aromatic and Branched-Chain Amino Acids during Sustained Exercise in Man and Their Possible Role in Fatigue". In: *Acta Physiol. Scand.* 133.1 (mai 1988), pages 115-121. ISSN: 0001-6772. DOI: 10.1111/j.1748-1716.1988.tb08388.x. pmid: 3227900 (cf. page 63).
- [10] D. R. YOUNG et al. "Energy and Electrolyte Metabolism and Adrenal Responses during Work in Dogs". In: *J Appl Physiol* 17 (juil. 1962), pages 669-674. ISSN: 0021-8987. DOI: 10.1152/jappl.1962.17.4.669. pmid: 14009330 (cf. page 63).

[11] D. S. KRONFELD et al. "Hematological and Metabolic Responses to Training in Racing Sled Dogs Fed Diets Containing Medium, Low, or Zero Carbohydrate". In: *Am. J. Clin. Nutr.* 30.3 (mar. 1977), pages 419-430. ISSN: 0002-9165. DOI: 10.1093/ajcn/30.3.419. pmid: 842493 (cf. page 63).

- [12] D. S. KRONFELD. "Diet and the Performance of Racing Sled Dogs". In: *J. Am. Vet. Med. Assoc.* 162.6 (15 mar. 1973), pages 470-473. ISSN: 0003-1488. pmid: 4734973 (cf. pages 63, 65).
- [13] Mark S. BLOOMBERG, Jon F. DEE et Robert Augustus TAYLOR. *Canine Sports Medicine and Surgery*. Saunders, 1998. 485 pages. ISBN: 978-0-7216-5022-7 (cf. pages 63, 65).
- [14] J. A. WAGNER, S. M. HORVATH et T. E. DAHMS. "Cardiovascular, Respiratory, and Metabolic Adjustments to Exercise in Dogs". In: *J Appl Physiol Respir Environ Exerc Physiol* 42.3 (mar. 1977), pages 403-407. ISSN: 0161-7567. DOI: 10.1152/jappl.1977.42.3.403. pmid: 14102 (cf. page 63).
- [15] Erica C. McKenzie et al. "Assessment of Alterations in Triglyceride and Glycogen Concentrations in Muscle Tissue of Alaskan Sled Dogs during Repetitive Prolonged Exercise". In: *American Journal of Veterinary Research* 69.8 (1er août 2008), pages 1097-1103. ISSN: 0002-9645. DOI: 10.2460/ajvr.69.8.1097 (cf. page 63).
- [16] P. S. GUY et D. H. SNOW. "Skeletal Muscle Fibre Composition in the Dog and Its Relationship to Athletic Ability". In: *Res. Vet. Sci.* 31.2 (sept. 1981), pages 244-248. ISSN: 0034-5288. pmid: 6459629 (cf. page 63).
- [17] Richard C. HILL. "The Nutritional Requirements of Exercising Dogs". In: *J Nutr* 128.12 (1<sup>er</sup> déc. 1998), 2686S-2690S. ISSN: 0022-3166. DOI: 10.1093/jn/128.12.2686S (cf. page 64).
- [18] I. T. CAMPBELL et J. DONALDSON. "Energy Requirements of Antarctic Sledge Dogs". In: *Br. J. Nutr.* 45.1 (jan. 1981), pages 95-98. ISSN: 0007-1145. DOI: 10.1079/bjn19810081. pmid: 7470440 (cf. page 64).
- [19] John P. LOFTUS et al. "Energy Requirements for Racing Endurance Sled Dogs". In: *J Nutr Sci* 3 (30 sept. 2014). ISSN: 2048-6790. DOI: 10.1017/jns.2014.31. pmid: 26101603 (cf. page 64).
- [20] National Research COUNCIL. *Nutrient Requirements of Dogs and Cats*. 2006. ISBN: 978-0-309-08628-8. DOI: 10.17226/10668 (cf. page 64).
- [21] Anne J. CARTER et Emily J. HALL. "Investigating Factors Affecting the Body Temperature of Dogs Competing in Cross Country (Canicross) Races in the UK". In: *Journal of Thermal Biology* 72 (1<sup>er</sup> fév. 2018), pages 33-38. ISSN: 0306-4565. DOI: 10.1016/j.jtherbio. 2017.12.006 (cf. page 64).
- [22] C. L. MATWICHUK et al. "Changes in Rectal Temperature and Hematologic, Biochemical, Blood Gas, and Acid-Base Values in Healthy Labrador Retrievers before and after Strenuous Exercise". In: *Am. J. Vet. Res.* 60.1 (jan. 1999), pages 88-92. ISSN: 0002-9645. pmid: 9918153 (cf. page 64).
- [23] R. J. ROSE et M. S. BLOOMBERG. "Responses to Sprint Exercise in the Greyhound: Effects on Haematology, Serum Biochemistry and Muscle Metabolites". In: *Res. Vet. Sci.* 47.2 (sept. 1989), pages 212-218. ISSN: 0034-5288. pmid: 2799077 (cf. pages 64, 65).

- [24] Arleigh J. REYNOLDS et al. "Lipid Metabolite Responses to Diet and Training in Sled Dogs". In: *J Nutr* 124 (suppl\_12 1<sup>er</sup> déc. 1994), 2754S-2759S. ISSN: 0022-3166. DOI: 10.1093/jn/124.suppl\_12.2754S (cf. pages 64, 65).
- [25] Richard C. HILL et al. "Effect of Mild Restriction of Food Intake on the Speed of Racing Greyhounds". In: *American Journal of Veterinary Research* 66.6 (1er juin 2005), pages 1065-1070. ISSN: 0002-9645. DOI: 10.2460/ajvr.2005.66.1065 (cf. pages 64, 65).
- [26] M. HARGREAVES et al. "Effect of Carbohydrate Feedings on Muscle Glycogen Utilization and Exercise Performance". In: *Med Sci Sports Exerc* 16.3 (juin 1984), pages 219-222. ISSN: 0195-9131. pmid: 6748917 (cf. page 65).
- [27] DOWNEY, KRONFELD et BANTA. "Diet of Beagles Affects Stamina." In: Journal American Animal Hospital Association (1980). ISSN: 0587-2871. URL: http://agris.fao.org/agris-search/search.do?recordID=US19810647245 (visité le 05/12/2019) (cf. page 65).
- [28] G. P. DOBSON et al. "Metabolic Changes in Skeletal Muscle and Blood of Greyhounds during 800-m Track Sprint". In: *Am. J. Physiol.* 255 (3 Pt 2 sept. 1988), R513-519. ISSN: 0002-9513. DOI: 10.1152/ajpregu.1988.255.3.R513. pmid: 3414847 (cf. page 65).
- [29] A. J. REYNOLDS et al. "Effect of Diet and Training on Muscle Glycogen Storage and Utilization in Sled Dogs". In: *J. Appl. Physiol.* 79.5 (nov. 1995), pages 1601-1607. ISSN: 8750-7587. DOI: 10.1152/jappl.1995.79.5.1601. pmid: 8594020 (cf. page 65).
- [30] A. J. REYNOLDS et al. "Effect of Postexercise Carbohydrate Supplementation on Muscle Glycogen Repletion in Trained Sled Dogs". In: *Am. J. Vet. Res.* 58.11 (nov. 1997), pages 1252-1256. ISSN: 0002-9645. pmid: 9361887 (cf. page 65).
- [31] P. W. TOLL et al. "Fluid, Electrolyte, and Packed Cell Volume Shifts in Racing Greyhounds". In: *Am. J. Vet. Res.* 56.2 (fév. 1995), pages 227-232. ISSN: 0002-9645. pmid: 7717591 (cf. page 65).
- [32] J. L. IVY et al. "Muscle Glycogen Synthesis after Exercise: Effect of Time of Carbohydrate Ingestion". In: *J. Appl. Physiol.* 64.4 (avr. 1988), pages 1480-1485. ISSN: 8750-7587. DOI: 10.1152/jappl.1988.64.4.1480. pmid: 3132449 (cf. page 65).
- [33] L. J. GOODYEAR et al. "Skeletal Muscle Plasma Membrane Glucose Transport and Glucose Transporters after Exercise". In: *J. Appl. Physiol.* 68.1 (jan. 1990), pages 193-198. ISSN: 8750-7587. DOI: 10.1152/jappl.1990.68.1.193. pmid: 2312459 (cf. page 65).
- [34] Asker E. JEUKENDRUP et Sarah ALDRED. "Fat Supplementation, Health, and Endurance Performance". In: *Nutrition* 20.7-8 (2004 Jul-Aug), pages 678-688. ISSN: 0899-9007. DOI: 10.1016/j.nut.2004.04.018. pmid: 15212751 (cf. page 65).
- [35] John A. HAWLEY. "Effect of Increased Fat Availability on Metabolism and Exercise Capacity". In: *Med Sci Sports Exerc* 34.9 (sept. 2002), pages 1485-1491. ISSN: 0195-9131. DOI: 10.1097/00005768-200209000-00014. pmid: 12218743 (cf. page 65).
- [36] John M. WALTERS et al. "Polyunsaturated Fatty Acid Dietary Supplementation Induces Lipid Peroxidation in Normal Dogs". In: *Vet Med Int* 2010 (27 juin 2010). ISSN: 2090-8113. DOI: 10.4061/2010/619083. pmid: 20613960 (cf. page 65).

[37] Linda P. CASE et al. "Chapter 24 - Performance". In: Canine and Feline Nutrition (THIRD EDITION). Saint Louis: Mosby, 2011, pages 243-260. ISBN: 978-0-323-06619-8. URL: http://www.sciencedirect.com/science/article/pii/B9780323066198100246 (visité le 06/12/2016) (cf. pages 65, 66).

- [38] A. J. REYNOLDS et al. "Effect of Protein Intake during Training on Biochemical and Performance Variables in Sled Dogs". In: *Am. J. Vet. Res.* 60.7 (juil. 1999), pages 789-795. ISSN: 0002-9645. pmid: 10407468 (cf. page 66).
- [39] S.E. PRATT-PHILLIPS et al. "Effect of Reduced Protein Intake on Endurance Performance and Water Turnover during Low Intensity Long Duration Exercise in Alaskan Sled Dogs". In: *Comparative Exercise Physiology* 14.1 (23 fév. 2018), pages 19-26. ISSN: 1755-2540, 1755-2559. DOI: 10.3920/CEP170024 (cf. page 66).
- [40] John OBER et al. "The Effects of Varying Concentrations of Dietary Protein and Fat on Blood Gas, Hematologic Serum Chemistry, and Body Temperature Before and After Exercise in Labrador Retrievers". In: *Front. Vet. Sci.* 3 (2016). ISSN: 2297-1769. DOI: 10.3389/fvets. 2016.00059 (cf. page 66).
- [41] A. QUERENGAESSER, C. IBEN et J. LEIBETSEDER. "Blood Changes during Training and Racing in Sled Dogs". In: *J. Nutr.* 124 (12 Suppl déc. 1994), 2760S-2764S. ISSN: 0022-3166. DOI: 10.1093/jn/124.suppl\_12.2760S. pmid: 7996288 (cf. page 66).
- [42] Richard C. HILL et al. "Effect of Increased Dietary Protein and Decreased Dietary Carbohydrate on Performance and Body Composition in Racing Greyhounds". In: *American Journal of Veterinary Research* 62.3 (1<sup>er</sup> mar. 2001), pages 440-447. ISSN: 0002-9645. DOI: 10.2460/ajvr.2001.62.440 (cf. page 66).
- [43] K. C. SCOTT et al. "Serum Ascorbic Acid Concentrations in Previously Unsupplemented Greyhounds after Administration of a Single Dose of Ascorbic Acid Intravenously or per Os". In: *J Anim Physiol Anim Nutr (Berl)* 86.7-8 (août 2002), pages 222-228. ISSN: 0931-2439. DOI: 10.1046/j.1439-0396.2002.00378.x. pmid: 15379908 (cf. page 66).
- [44] Richard J PIERCY et al. "Vitamin E and Exertional Rhabdomyolysis during Endurance Sled Dog Racing". In: *Neuromuscular Disorders* 11.3 (1<sup>er</sup> avr. 2001), pages 278-286. ISSN: 0960-8966. DOI: 10.1016/S0960-8966(00)00199-1 (cf. page 66).
- [45] Karen C. Scott et al. "Effect of α-Tocopheryl Acetate Supplementation on Vitamin E Concentrations in Greyhounds before and after a Race". In: *American Journal of Veterinary Research* 62.7 (1<sup>er</sup> juil. 2001), pages 1118-1120. ISSN: 0002-9645. DOI: 10.2460/ajvr. 2001.62.1118 (cf. page 66).
- [46] Rebecca J. MARSHALL et al. "Supplemental Vitamin C Appears to Slow Racing Greyhounds". In: *J. Nutr.* 132 (6 Suppl 2 juin 2002), 1616S-21S. ISSN: 0022-3166. DOI: 10.1093/jn/132.6.1616S. pmid: 12042473 (cf. page 66).

# Nutrition Clinique

| 5  | Surpoids, obésité et arthrose       | 75  |
|----|-------------------------------------|-----|
| 5  | Le diabète                          | 95  |
| 7  | La maladie rénale chronique         | 105 |
| 3  | Les urolithiases                    | 119 |
| 9  | Les affections cardiovasculaires    | 135 |
| 10 | Affections gastriques               | 151 |
| 11 | Affections intestinales et du colon | 167 |
| 12 | Affections Cutanées                 | 187 |



Sébastien Lefebvre

### 5.1 Introduction

Le choix de traiter deux affections qui n'ont, a priori, pas de grands rapports, hormis des liens de pathogénicité, peut être discuté. Cependant, de l'avis de l'auteur, il est important de replacer l'obésité dans un contexte plus large qu'uniquement la surcharge pondérale. Dans un précèdent chapitre, les conséquences de l'obésité sur l'homéostasie du glucose et plus spécifiquement sur le diabète ont été abordées, mais dans ce chapitre l'obésité est abordée comme étant, entre autres, une affection amenant à un état inflammatoire chronique et généralisé. Ainsi, l'obésité peut être abordé comme une affection endocrinienne engendrant de nombreuses comorbidités dont l'arthrose. De plus, l'arthrose peut être un facteur de risque et d'aggravation de l'obésité. Par conséquent, ce sont deux affections qu'il est courant de prendre en charge en même temps.

Ce chapitre présente succinctement l'épidémiologie et la pathogénie de ces deux affections. Par la suite, les éléments clefs de la prise en charge nutritionnelle sont abordés, avant de discuter de l'offre en aliments industriels pour chacune des deux affections.

# 5.2 Éléments généraux et épidémiologie

### 5.2.1 Surpoids et obésité

### Prévalence et facteurs de risques

Le surpoids et l'obésité se définissent comme une accumulation anormale ou excessive de graisse corporelle qui peut nuire à la santé. La différence entre surpoids et obésité peut légèrement varier selon les définitions utilisées, ici nous considérons le surpoids à partir d'un excès de poids supérieur à 10% du poids normal (environ 30% de masse grasse corporelle) et l'obésité à partir de 20% d'excès

(environ 40% de masse grasse corporelle)<sup>1</sup>. Cette distinction entre obésité et surpoids trouve son origine en médecine humaine, où il a été observé que les conséquences majeures de l'excès de poids sur la santé surviennent à partir de 15% de surpoids<sup>2</sup>.

Dans les pays développés, la prévalence du surpoids est estimée à environ 40% et 30%, celle de l'obésité à environ 20% et 10% pour respectivement les populations de chiens et de chats<sup>1,3,4</sup>. De grandes variations peuvent exister, ainsi dans une étude de 2006 la prévalence de chiens obèse était estimée à 5% en France<sup>3</sup>. Concernant les chats, la prévalence en France, d'après une étude de 2009, serait de 19% pour le surpoids et de 7.8% pour l'obésité<sup>5</sup>. Enfin, localement il peut y avoir une prévalence bien plus importante d'obésité. Ainsi, dans les îles Canaries l'obésité touche 40.9% de la population canine<sup>6</sup>. Cette étude est particulièrement intéressante, car la région des îles Canaries a aussi l'une des prévalences d'obésité humaine les plus importantes<sup>7</sup>. De plus, 77% des chiens souffrant d'obésité de ces îles avaient un propriétaire lui-même en excès pondéral<sup>6</sup>.

Ces études de prévalences ont mis en évidence plusieurs facteurs de risque du surpoids et de l'obésité. Ces facteurs peuvent être classés en deux catégories : les facteurs endogènes et les facteurs exogènes. Le Tableau 5.2 reprend les différents facteurs de risque. La compréhension de ces facteurs de risques, notamment les exogènes, est essentielle pour prévenir et traiter l'obésité. Ces facteurs de risque modifient soit le besoin énergétique soit la prise alimentaire. Ainsi, en absence d'adaptation, ils augmentent le risque d'un apport alimentaire supérieur au besoin de l'animal et par conséquent celui d'un excès pondéral.

| Facteur de risques endogènes | Facteurs de risques exogènes                        |
|------------------------------|-----------------------------------------------------|
| Age                          | Activité physique                                   |
| Sexe et statut reproducteur  | Influence environnementale sur la prise alimentaire |
| Affection endocrinienne      | Composition de l'alimentation et appétence          |
| Prédispositions génétiques   | Environnement et style de vie                       |
| T                            | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1             |

TABLE 5.2: iste des facteurs de risques de l'obésité d'après Case, 2011<sup>2</sup>

L'âge est corrélé négativement avec l'activité physique)<sup>8</sup> et avec la masse maigre<sup>9</sup>. Ainsi de nombreux modèles évaluant le besoin énergétique prennent en compte l'effet de l'âge sur la baisse d'activité et du métabolisme basal<sup>10,11</sup>. De même, la prévalence des affections ostéo-articulaires type arthrose augmente aussi avec l'âge ce qui a aussi une conséquence directe sur l'activité et donc sur le risque d'obésité.

L'influence du sexe et du statut reproducteur sur le risque de développement d'un excès pondéral est la conjonction de plusieurs facteurs. Suite à la stérilisation, une baisse du métabolisme basal est observée, diminuant le besoin énergétique. Cette diminution du métabolisme basal fait débat. En effet, chez le chat cette diminution n'est pas observée quand le métabolisme basal est rapporté à la masse maigre<sup>12</sup>. La prise volontaire d'aliments a plutôt tendance à être stable voir à augmenter<sup>13-16</sup>. Ce dernier point serait majeur dans la prise de poids de l'animal stérilisé.

La génétique joue aussi un grand rôle dans l'obésité, de nombreuses races ont été décrites comme étant prédisposées à l'obésité, notamment celles issues du retriever. Ainsi une restriction de l'apport énergétique est nécessaire pour limiter le développement de l'obésité<sup>17</sup>. Une récente étude a identifié un des gènes qui serait à l'origine de cette prédisposition à la prise de poids, le gène POMC<sup>18</sup>. Chez de nombreux labradors, une délétion au niveau de ce gène conduit à son inefficacité, ce qui a plusieurs conséquences sur le métabolisme, dont une tendance au développement des tissus adipeux, mais aussi une augmentation de la motivation pour l'alimentation. De plus, cette étude met en

évidence que la délétion du gène POMC est plus fréquente dans les populations de chien d'assistance, avec l'hypothèse que la mutation ait été sélectionnée en raison de l'importance de la récompense alimentaire dans l'éducation. Cet élément incite à être particulièrement vigilant à la prévention du surpoids dans les populations de chien d'assistance. De plus, les comorbidités de l'obésité peuvent entraîner une réforme précoce de ces animaux.

Les facteurs de risque exogènes sont les éléments clefs de la prise en charge précoce et de la prévention du surpoids et de l'obésité étant donné que c'est sur eux qu'il est possible d'influer. Une des grandes spécificités de l'alimentation des animaux de compagnie par rapport à celle des humains adultes est que le propriétaire à tout contrôle sur l'alimentation, mais aussi sur le style de vie de l'animal. C'est une porte ouverte à enfoncer, mais qu'il est important de rappeler en consultation. Le propriétaire décide de quoi donner, quand, comment, de l'enrichissement du milieu, du type et de l'intensité des activités physiques.

Bien qu'il soit important de ne pas confondre appétence et satiété, l'appétence de l'aliment a une conséquence directe sur la quantité d'aliments mangée et par conséquent sur la quantité d'énergie apportée. Ainsi une alimentation riche en matière grasse aura tendance à être plus appètente, à avoir une densité énergétique plus forte et, ainsi, à augmenter l'apport énergétique. De plus, les matières grasses sont transformées avec plus d'efficacité en graisse corporelle que les autres macronutriments. À l'inverse, les protéines ont plutôt un effet positif sur la satiété, notamment chez le chien<sup>2,19</sup>. Cet effet ne semble pas être présent chez le chat<sup>20</sup>. De même, en diminuant la densité énergétique et, pour certaines, par leur action mécanique et sur le transit digestif, les fibres ont aussi une tendance à favoriser la satiété. Ce dernier point est parfois remis en question, notamment concernant l'interprétation des expériences.

La facilitation sociale peut aussi augmenter la prise d'aliment. Pour rappel, la facilitation sociale est le fait que la présence d'un ou de plusieurs autres individus augmente l'efficacité d'un individu à réaliser une action. Cet effet est surtout présent chez le chien qui mit en présence d'un congénère, et en absence d'interaction agoniste, a tendance à augmenter sa prise alimentaire.

Le nombre de repas peut aussi jouer un rôle dans la dépense énergétique. En effet, plus le nombre de repas est grand plus la thermogénèse issue de la digestion est importante. Notamment du fait qu'il faille augmenter la quantité d'enzyme digestive à synthétiser. De plus, les protéines augmentent aussi notablement la thermogénèse alimentaire<sup>21,22</sup>. Attention, une augmentation du nombre de repas sur la journée ne doit pas entraîner une augmentation de la ration journalière totale.

De même, le fait de donner fréquemment des friandises ou restes de table à son animal de compagnie, qui plus est, sans les déduire de sa ration journalière est un facteur de risque non négligeable<sup>23,24</sup>.

La sédentarité et le manque d'activité physique sont deux grands facteurs de risque de l'obésité et du surpoids<sup>25,26</sup>. Ces facteurs sont courants dans les sociétés industrialisées. La possession d'un chien a un effet bénéfique sur l'activité physique humaine et est conseillée par certains médecins dans la prise en charge du surpoids et de l'obésité<sup>25,27,28</sup>. Cependant, comme vu précédemment, le fait d'avoir un propriétaire souffrant de surpoids est un facteur de risque pour l'animal<sup>6,23</sup>.

Enfin, le surpoids peut être la conséquence d'une affection hormonale sous-jacente, notamment d'une hypothyroïdie ou d'un hyperadrénocorticisme<sup>2</sup>.

# **Physiopathologie**

De façon évidente, le surpoids est la conséquence d'un déséquilibre entre l'énergie apportée par la ration et celle dépensée par l'organisme. Cette inadéquation aboutie au stockage de l'énergie résiduelle dans les adipocytes. Cependant une erreur commune est de considérer le surpoids et

l'obésité uniquement comme des affections de stockage pouvant engendrer des "désagréments" mécaniques.

En effet, en réponse à une arrivée importante de triglycérides à stocker, les tissus adipeux ont deux « options" pour croître : augmenter le volume des adipocytes (obésité hypertrophique) ou augmenter le nombre d'adipocytes (obésité hyperplasique). La sélection d'une voie ou l'autre se fait en fonction du contexte hormonal. Ainsi, durant la croissance et la puberté, dans un contexte inflammatoire et d'obésité prolongée le développement sera plutôt hyperplasique. Inversement, à l'âge adulte c'est plutôt une obésité hypertrophique qui est observée.

Cette différence dans le développement de l'obésité a son importance dans les conséquences cliniques et le traitement de la maladie. En effet, les adipocytes produisent de nombreuses molécules pouvant avoir un rôle hormonal et/ou dans l'inflammation (Tableau 5.4)<sup>29,30</sup>. Ainsi, plus le nombre d'adipocytes est important plus la production hormonale de ces adipocytes peut être importante. De plus, si le nombre d'adipocytes peut augmenter durant la vie, celui-ci ne diminue pas. Par conséquent, les adipocytes ne pouvant être « vides", l'obésité hyperplasique crée un « effet cliquet" empêchant un retour à un poids de forme.

En conclusion, il est fondamental d'éviter tout surpoids durant la croissance et de prendre en charge au plus vite les excès pondéraux à l'âge adulte<sup>31</sup>.

Tableau 2 : exemples de molécules produites par les adipocyte Molécules

| Molecules                 |                                              |
|---------------------------|----------------------------------------------|
| Adiponectine              | Résistine                                    |
| Angiotensinogène          | Sérum amyloïde A                             |
| Protéine 3 du complément  | TGF                                          |
| IGF-1                     | TNF                                          |
| Interleukine $\beta$ et 6 | Inhibiteur de l'activateur du plasminogène 1 |
| Leptine                   | Facteur induit par l'hypoxie HIF- $1\alpha$  |
| TD: 7 4 D 1               | 1 12 1 1 1 1 1 1 1                           |

TABLE 5.4: Exemples de molécules produites par les adipocytes

L'obésité perturbe de nombreux mécanismes hormonaux (Tableau 5.6), notamment l'homéostasie du glucose (voir cours sur le diabète). Mais en plus de ces perturbations hormonales, l'obésité est de plus en plus décrite comme une maladie inflammatoire chronique. Ce statut d'inflammation chronique prédispose à de nombreuses affections, comme les allergies et les cancers<sup>30,32</sup>. De plus, cette composante inflammatoire favorise, en plus de la composante mécanique, le développement de l'arthrose. Enfin le surpoids comme l'obésité réduisent significativement l'espérance de vie<sup>17,33,34</sup>.

# 5.2.2 Arthrose

L'arthrose est l'affection ostéo-articulaire la plus commune chez le chien, et serait une affection tout aussi commune chez le chat<sup>35-38</sup>. Cependant, chez le chat, cette affection est certainement sous diagnostiquée. Elle conduit notamment des douleurs et des boiteries. Par conséquent, l'arthrose limite l'activité physique et peut prédisposer à l'obésité. La prévalence de l'affection augmente avec l'âge, et le surpoids prédisposerait à son développement précoce. Cependant un élément particulier a attiré l'attention des chercheurs en médecine humaine, en effet si la précocité de l'arthrose du genou était prévisible dans un contexte d'obésité, celle de la main l'était moins<sup>39</sup>. De récentes études semblent mettre en avant le rôle de l'inflammation chronique dans la pathogénie de l'arthrose, ce qui tendrait à

| Hormone                         | Humain                             | Chien        | Chat         |
|---------------------------------|------------------------------------|--------------|--------------|
| Axe hypothalamo-hypophisaire    |                                    |              |              |
| Hormone de croissance           | $\downarrow$                       | ND           | ND           |
| IGF 1                           | $\uparrow$ , normale, $\downarrow$ | ↑, normale   | ND           |
| Corticolibérine, ACTH, cortisol | $\uparrow$                         | ↑, normale   | ND           |
| TRH, TSH                        | $\uparrow$ , normale, $\downarrow$ | ↑, normale   | Normale      |
| Hormones sexuelles              |                                    |              |              |
| Testostérone (mâle)             | <b>\</b>                           | <b>\</b>     | ND           |
| Testostérone (femelle)          | $\uparrow$                         | $\uparrow$   | ND           |
| Œstrogène                       | $\uparrow$                         | ND           | ND           |
| Pancréas                        |                                    |              |              |
| Insuline                        | $\uparrow$                         | $\uparrow$   | <u> </u>     |
| Glucagon                        | $\uparrow$                         | ND           | ND           |
| Amyline                         | $\uparrow$                         | ND           | ND           |
| Polypeptide pancréatique        | $\uparrow$                         | ND           | ND           |
| Tissu adipeux                   |                                    |              |              |
| Leptine                         | $\uparrow$                         | $\uparrow$   | <u> </u>     |
| Adiponectine                    | $\downarrow$                       | $\downarrow$ | $\Downarrow$ |
| Résistine                       | $\uparrow$                         | ND           | ND           |
| TNF- $\alpha$ , IL-6            | $\uparrow$                         | $\uparrow$   | $\uparrow$   |
| Autres Hormones                 |                                    |              |              |
| T3, T4                          | ↑, normale                         | ↑, normale   | Normale      |
| Prolactine                      | ↑, normale                         | $\uparrow$   | $\uparrow$   |
| Ghreline                        | $\downarrow$                       | $\downarrow$ | ND           |
| Cholecystokinine                | $\uparrow$ , normale, $\downarrow$ | ND           | ND           |
| Glucagon like peptide 1         | $\downarrow$                       | $\uparrow$   | ND           |
| Peptides YY                     | <b></b>                            | ND           | ND           |

TABLE 5.6: Effet de l'obésité sur les sécrétions hormonales (d'après Hall, 2011).

confirmer l'importance de la prise en charge de l'obésité pour limiter cette inflammation(Robinson et al. 2016; Scanzello 2017)<sup>40,41</sup>.

# 5.3 Éléments clefs de l'accompagnement nutritionnel

L'accompagnement nutritionnel du surpoids et de l'obésité vise à diminuer la masse grasse tout en préservant la masse maigre. Il est important de le faire en évitant la sensation de faim. Si cela n'est pas le cas, dans le meilleur des cas, les comportements induits conduisent à un arrêt du suivi des recommandations, sinon des comportements agressifs peuvent se développer en raison de la faim, nécessitant une prise en charge comportementale. De plus, il est important de garder à l'esprit que, si une restriction énergétique est réalisée, les apports dans les autres nutriments doivent être suffisant pour couvrir les besoins d'entretiens. Ainsi, une ration adaptée pour la perte de poids est plus riche en nutriments qu'une ration standard pour une même quantité d'énergie apportée.

Concernant la prise en charge de l'arthrose, si elle est accompagnée d'obésité ou de surpoids, une grande partie de l'accompagnement nutritionnel passe par la résolution de l'excès pondéral. En effet,

la baisse de poids permet de diminuer les boiteries et la fréquence des crises d'arthrose<sup>42,43</sup>. De plus, cette perte de poids facilite la reprise progressive de l'exercice nécessaire dans la prise en charge de l'arthrose<sup>44</sup>.

# 5.3.1 Détermination de l'apport énergétique

Les équations de prédiction du besoin énergétique permettent de calculer une ration initiale pour la perte de poids. Considérant, de façon schématique, que seule la masse maigre participe au besoin énergétique et que les équations de prédiction du besoin énergétique à l'entretien considèrent un animal avec un poids optimal, soit 20% de masse grasse, on peut se demander quel poids utiliser pour calculer la quantité d'énergie à fournir. La plupart des auteurs conseillent de calculer le besoin énergétique avec le poids idéal puis de diminuer l'apport de 20% (k4=0.8). D'autres proposent de plutôt d'utiliser le poids actuel et d'appliquer un déficit plus important de 40%². Cependant, une récente étude tend à montrer que l'utilisation du poids idéal est plus efficace<sup>45</sup>. Dans le but de déterminer le poids idéal, le plus simple est de supposer que la quantité de masse maigre (MM) est constante malgré le surpoids (et représente 80% du poids idéal), de déterminer le pourcentage de masse grasse de l'animal (MG), ainsi par l'équation suivant le poids idéal est obtenu :

poids idéal=poids actuel\* 
$$\frac{\%MM_{actuelle}}{\%MM_{ideale}}$$
 = poids actuel\*  $\frac{((1-GC))}{0,8}$  (5.1)

La méthode de référence pour déterminer le pourcentage de masse grasse est l'absorption biphotonique à rayons X (DEXA), cependant son coût est prohibitif comparé à son intérêt dans notre cas. La détermination des notes d'état corporelles, en utilisant les grilles décrites par Laflamme<sup>46,47</sup> et reprises par la WSAVA<sup>48</sup>, permet d'obtenir ce pourcentage avec une excellente corrélation par rapport à la méthode DEXA<sup>49,50</sup>. La détermination de ce poids idéal permet aussi d'avoir un objectif à atteindre. Cependant, si l'obésité est hyperplasique, cet idéal ne pourra pas être atteint à cause de l'effet cliquet.

Une fois qu'une première estimation de l'apport énergétique comprenant un déficit est réalisée, il est nécessaire de mettre en place un suivi afin de valider cette estimation, et de réévaluer l'apport énergétique en fonction du résultat obtenu afin d'obtenir une perte de poids entre 0.5 et 2% du poids par semaine. Le suivi sera aussi l'occasion de vérifier que la restriction énergétique est bien supportée. La figure 5.1 représente un protocole de suivi de perte de poids. Dans la sélection d'un aliment, il est nécessaire de prévoir une "marge" pour les adaptations éventuelles de la quantité donnée d'aliment.




FIGURE 5.1: Exemple d'un protocole de suivi de perte de poids.

### 5.3.2 Protéines

L'apport protéique est essentiel afin de conserver la masse musculaire malgré le déficit énergétique. Il faut, au minimum, assurer le besoin d'entretien en protéine et bien vérifier que l'aliment choisi à un rapport protidocalorique élevé (voir le cours de bromatologie industrielle Chapitre 2). De plus, en raison de la thermogénèse due au métabolisme des protéines, celles-ci pourraient permettre une meilleure satiété chez le chien.

Chez le chat, l'effet satiétogène des protéines ne fait pas consensus. En effet, l'augmentation du taux protéique augmente la prise volontaire de l'aliment<sup>20</sup>. Cependant, cette augmentation de la prise alimentaire, bien qu'engendrant une augmentation de l'énergie apportée n'entraine pas une prise de poids<sup>20</sup>.

De nombreuses recherches ont mis en avant l'importance de l'apport en protéine pour le succès de la prise en charge des excès de poids en maintenant la masse maigre chez le chien<sup>51-53</sup>, comme chez le chat<sup>20,54</sup>. De plus, certains acides aminés sembleraient avoir une utilité pour améliorer la perte de poids, telle la lysine<sup>55</sup>. Enfin, la L-carnitine aurait un rôle préventif de la lipidose hépatique chez le chat durant la perte de poids<sup>56</sup>. Cependant, son effet sur la perte de poids chez le chat serait plus contrasté que chez l'homme)<sup>57,58</sup>

# 5.3.3 Matières grasses

Dans le cadre de la perte de poids, les matières grasses doivent être limitées en quantités afin de diminuer la densité énergétique. Cependant, il reste nécessaire d'assurer l'apport d'une quantité suffisante en acides gras essentiels.

Dans le cadre d'un animal souffrant d'arthrose; certains acides gras peuvent être bénéfiques. En effet, l'acide eicosapentaénoïque (EPA, omega 3) est, au même titre que l'acide arachidonique (omega 6), un substrat de la cyclooxygénase et de la lipoxygénase. Cependant, quand l'EPA est utilisé en substrat, il aboutit à la production de leucotriènes et d'eicosanoïdes moins pro-inflammatoire que ceux produits à partir de l'acide arachidonique, permettant ainsi de moduler l'inflammation(Terano et al. 1986). De plus, par d'autres mécanismes, l'acide docosahéxaénoïque (DHA, omega 3) a aussi une action de modulateur de l'inflammation<sup>59-61</sup>. Enfin l'incorporation d'acides gras omega 3 à

chaîne plus courte, comme l'acide  $\alpha$ -linolénique inhibe la formation des oméga 6 à chaîne longue. Cependant, cet effet est moins efficace sur l'inflammation que l'ajout direct de DHA ou d'EPA<sup>62</sup>.

Depuis une dizaine d'années, de nombreuses études ont montré l'efficacité de l'ajout d'EPA et de DHA dans l'alimentation pour améliorer la prise en charge de l'arthrose chez le chien<sup>43,63-66</sup>. Ces études ont été réalisées avec des groupes contrôles placebos. Les doses administrées dépendent des études, on peut noter l'efficacité d'aliment contenant 2g/Mcal EM d'EPA (1.1g/Mcal) et de DHA (0.9g/Mcal)<sup>63,66</sup>. Une autre étude a démontré une efficacité pour une dose orale de 0.14g/kg0.75 soit 1.1g/Mcal de BEE de DHA et d'EPA<sup>64</sup>.

L'efficacité de l'EPA et du DHA apparaît sous environ 1 mois et est complète au bout de deux. En effet, il est nécessaire que les acides gras au niveau des membranes cellulaires soient remplacés par les oméga 3. Cette efficacité s'illustre par une diminution des boiteries, une amélioration de l'état général et une diminution de l'utilisation d'anti-inflammatoire.

### **5.3.4** Fibres

Les fibres permettent de diluer l'énergie de la ration. Par cette dilution et leurs action sur la vitesse du transit intestinal, elles sont, notamment chez le chien un élément majeur de la gestion de la satiété. Une étude chez le chien a montré que l'augmentation conjointe des fibres et du taux protéique dans un aliment permettait d'assurer plus de satiété que l'augmentation d'un seul de ces paramètres<sup>52</sup>.

Cependant, leur ajout doit être raisonné quant à leur quantité et leur qualité. En effet, un apport trop important en fibre peur réduire notablement la digestibilité de certains nutriments et aboutir à des carences<sup>67,68</sup>. Compte tenu du peu d'informations disponibles sur la qualité des fibres, il est important d'être raisonnable dans leur ajout, notamment si certains apports en nutriment sont faibles et d'être attentif à des dépréciations du pelage et de la qualité des fèces.

### 5.3.5 Compléments alimentaires

De nombreux compléments alimentaires sont disponibles sur le marché pour accompagner l'animal souffrant d'arthrose, souvent à base de chondroïtine sulfate et de glucosamine. Pendant de nombreuses années, les études et méta-analyses donnaient des résultats contrastés quant à leur efficacité. Cependant, depuis une méta-analyse de 2007 par Vlad et al.<sup>69</sup> mettant en évidence les biais des quelques études montrant l'efficacité de la glucosamine, le consensus est plutôt à l'inefficacité de la chondroïtine sulfate et de la glucosamine. L'une des principales difficultés, dans l'étude des compléments alimentaires avec une indication pour l'arthrose, est que l'effet placébo de la consultation est important et peut être confondu avec une efficacité du complément si un groupe contrôle correct n'est pas constitué. Cet effet placebo est aussi remarqué chez le chien, où les complément alimentaire à base de chondroïtine sulfate ou de glucosamine ne donnent pas de meilleurs résultats que le placebo, malgré une amélioration significative de l'animal dans les semaines suivant la consultation<sup>70,71</sup>.

### 5.3.6 Exercice et environnement

L'exercice et l'enrichissement de l'environnement sont deux points importants de la gestion du poids, mais aussi de celle de l'arthrose<sup>44</sup>. La reprise de l'exercice, le type d'exercice et son intensité doivent être en adéquation avec l'état de l'animal. Si l'activité ne semble pas permettre une baisse de l'excès pondéral à elle seule, celle-ci permettrait de prévenir la reprise pondérale et d'améliorer la perte de poids en synergie avec une alimentation adaptée<sup>72</sup>. L'enrichissement de l'environnement permet aussi de favoriser l'exercice volontaire et de diminuer le stress de l'animal, ce dernier élément pouvant participer à la prise de poids<sup>73</sup>. L'enrichissement de l'environnement et de la prise alimentaire

sont fondamentaux dans la prise en charge de l'obésité chez le chat<sup>74,75</sup>.

# 5.4 Abord du propriétaire

Dans la prise en charge de l'obésité, l'abord du propriétaire est essentiel. De nombreux propriétaires ne considèrent pas l'obésité comme une maladie ou évitent la question. Il est important de situer l'état psychologique du propriétaire vis-à-vis de la prise en charge de l'obésité de son animal. Le tableau 5.8 reprend les différentes étapes psychologiques du propriétaire et propose des actions à mener par le vétérinaire pour accompagner au mieux le propriétaire. Une fois l'adhésion du propriétaire obtenue, un plan de perte de poids peut être réalisé. Le suivi et le soutien du propriétaire par le vétérinaire tout au long du plan de perte de poids sont des éléments de son succès.

| <br>2 "Comment pensez-vous que nous devrions procéder à partir de maintenant" | "Avec les vacances je n'ai pas eu le temps<br>de le promener comme avant." | Planifier à l'avance les défaillances                         | gements qui ont fonctionné et utilisez-les<br>comme stratégie pour progresser         |
|-------------------------------------------------------------------------------|----------------------------------------------------------------------------|---------------------------------------------------------------|---------------------------------------------------------------------------------------|
| 4 "Qu'est-ce qui a bien fonctionné pour<br>vous et Toby?"                     | "Nous n'avons fait aucun progrès ce<br>mois-ci."                           | Comprendre que la motivation va et vient                      | Abandon<br>Le client a abandonné, Identifiez les chan-                                |
| fis?"  3 "Étes-vous satisfait des progrès?"                                   |                                                                            |                                                               |                                                                                       |
| pour vous?"  2 "Comment avez-vous surmonté les dé-                            |                                                                            | naïtre les progrès                                            |                                                                                       |
| Toby a perdu X kg"  2 "Qu'est-ce qui était le plus difficile                  | suelles, car j'aı hâte de voir combien il a<br>perdu"                      | = o                                                           | Le client progresse avec les changements                                              |
| 5 "En raison de votre travail acharné,                                        | "Je commence à attendre les pesées men-                                    | Fournir un soutien actif pour maintenir                       | Entretient                                                                            |
| convient à tous les deux"                                                     |                                                                            |                                                               |                                                                                       |
| qués?"  3 "On dirait que ce changement vous                                   |                                                                            |                                                               |                                                                                       |
| 2 "Quels changements avez-vous remar-                                         | quettes"                                                                   | Féliciter les efforts du client                               | ments                                                                                 |
| 5 "Vous faites un excellent travail pour                                      | "Je fais marcher Toby deux fois par jour"                                  | Fournir un soutien actif et des encoura-                      | Action                                                                                |
| perde du poids"                                                               |                                                                            |                                                               |                                                                                       |
| vous seriez prêts à faire pour débuter"  4 "Vous semblez motivé pour que Gus  |                                                                            |                                                               |                                                                                       |
| poids de toby?  2 "Quels sont les petits changements que                      | Quel etait le regime que nous pourrions essayer?"                          | tion et a établir de petits objecuis précis<br>et réalisables | Le client prevoit d'agir                                                              |
| 2 "Quels sont vos objectifs concernant le                                     | "Que puis-je faire pour le faire maigrir"                                  | Aider à déterminer le meilleur plan d'ac-                     | Préparation                                                                           |
| quand on est déjà bien occupé"                                                |                                                                            |                                                               |                                                                                       |
| 2 "Qui pourrait vous aider?"                                                  |                                                                            |                                                               |                                                                                       |
| vous ?"                                                                       | elle les attend maintenant"                                                |                                                               | •                                                                                     |
| 2 "Qu'est-ce qui sera le plus difficile pour                                  | "Nous pourrions réduire les à-côtés, mais                                  |                                                               | tudes pour le moment                                                                  |
| son poids, mais ne savez pas tout a rait<br>comment faire pour le réduire"    | Je pourrai raire une autre balade, mais<br>ma iournée déià bien remplie"   | du cnangement<br>Identifier les soutiens et les obstacles     | Le client est conscient du problème, mais<br>n'a pas l'intention de changer ses habi- |
| 3 "On dirait que vous êtes préoccupés par                                     | "Oui, mais"                                                                | Examiner les avantages et inconvénients                       | Contemplation                                                                         |
| Gus ?"                                                                        | table et je ne peux rien faire"                                            |                                                               |                                                                                       |
| 4 "Je peux voir que vous aimez bien                                           | "Mes enfants lui donnent à manger à                                        | Ston ratary                                                   |                                                                                       |
| bue à ses problèmes de santé. Qu'en                                           | dernière, mais elle n'a pas voulu le man-                                  | Laisser la <b>porte ouverte</b> pour une discus-              | dans les 6 mois                                                                       |
| 2 "Je crains que le poids de Toby contri-                                     | "Nous avons essayé un régime l'année                                       | Établir une relation de soutien.                              | et n'a pas l'intention de changer d'avis                                              |
| Toby?"                                                                        | ronds"                                                                     | Fournir des informations générales.                           | Le client n'est pas conscient du problème                                             |
| 1 "Pouvons-nous parler du poids de                                            | « Gus va très bien, je préfère les chats                                   | <b>Demander</b> si on peut parler du poids                    | Précontemplation                                                                      |
| Les options pour l'équipe vétérinaire                                         | Les commentaires des propriétaires                                         | Tâches de l'équipe vétérinaire                                | Stade du changement                                                                   |

TABLE 5.8: les 6 étapes du changement pour le propriétaire, issu du travail de Churchill 2010<sup>76</sup> et traduit par la Dr Vét Anne-Cécile CAEL. 1: Demander la permission 2 : Questions ouvertes 3 : Écoute réfléchie 4 : Empathie 5 : compliment

### 5.5 Aliments commerciaux

Les aliments à destination des chiens et des chats souffrants d'obésité ou de surpoids ont pour la plupart montré leur efficacité avec de bons niveaux de preuve<sup>72</sup>. Ils présentent, par rapport aux aliments physiologiques, une densité énergétique plus faible en moyenne et une teneur en protéine plus élevée (Figure et 3). Il est intéressant de noter que ces dernières années de plus en plus de marques proposent des aliments ayant une autre indication en plus de la gestion du poids, comme le diabète ou l'arthrose.

Enfin de nouvelles approches, comme la nutrigénomique, sont envisagées pour la prise en charge de l'obésité. Cette approche est encore récente, mais semble permettre la perte de poids malgré les défauts d'observances des propriétaires<sup>77-79</sup>. De futures études seraient intéressantes pour comparer cette approche avec des aliments plus conventionnels.

Concernant les aliments pour l'accompagnement des chiens atteints d'arthrose, ils sont caractérisés par de hautes teneurs en EPA et DHA, et ont pour certains, une indication pour la perte de poids 5.4. La directive n° 38/2008 impose une teneur minimale en matière sèche de 3.3% d'omega 3 et de 0.38% d'EPA. Certaines marques utilisent des termes comme "Joint" et "Mobility" pour des aliment riches en chondroïtine et en glucosamine. Mais, ces marques ne précisent pas la teneur en EPA (figure 5.4)et ne sont souvent pas riche en omega 3(figure 5.5). Ainsi, bien que bien que leur communication pourrait laisser penser le contraire, ces marques n'ont pas d'objectif nutritionnel particulier au sens de la directive n° 38/2008. Compte tenu de l'inefficacité de certaine approche de l'accompagnement de l'arthrose, l'auteur encourage les praticiens à vérifier les teneurs en EPA et/ou DHA des aliments qu'ils prescrivent pour vérifier que celles-ci soient bien en adéquation avec l'indication de l'aliment.

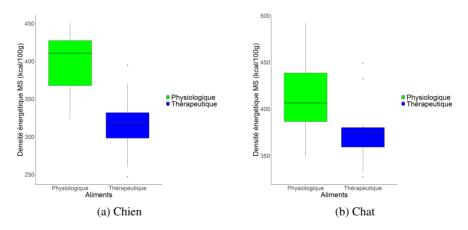



FIGURE 5.2: Densité énergétique en matière sèche des aliments obésité à destination du chien et du chat, par rapport aux aliments physiologiques de marque vétérinaire.

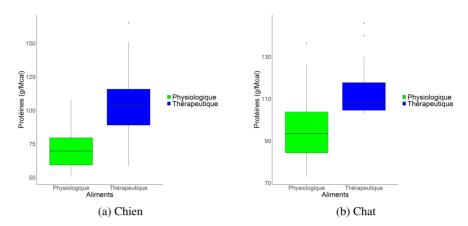



FIGURE 5.3: Rapport protidocalorique des aliments obésité à destination du chien et du chat, par rapport aux aliments physiologiques de différents types de marques.

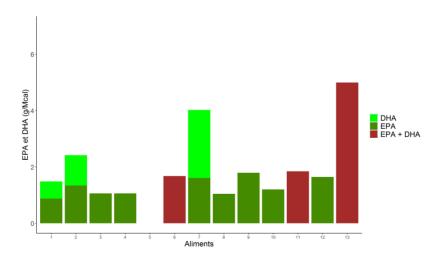



FIGURE 5.4: Teneur en EPA et/ou DHA de différents aliments à destination des chiens souffrants d'arthrose. Les aliments 2 et 6, qui ne communiquent pas sur leur teneur en EPA, n'ont pas l'objectif nutritionnel particulier pour l'ostéoarthrose, cependant leur communication laisse à penser qu'ils l'ont.

Conclusion 87

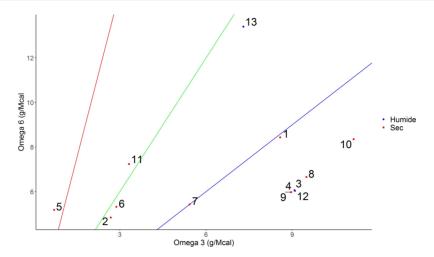



FIGURE 5.5: Teneur en omega 6 et omega 3 de différents aliments à destination des chiens souffrants d'arthrose. Les aliments 2 et 6 n'ont pas l'objectif nutritionnel particulier pour l'ostéoarthrose, cependant leur communication laisse à penser qu'ils l'ont.

### 5.6 Conclusion

L'obésité et l'arthrose sont deux affections de plus en plus courantes chez nos animaux de compagnie. L'accompagnement diététique est l'élément principal de la gestion du surpoids et un élément majeur de celle de l'obésité. Dans cette prise en charge diététique, la prise en compte du propriétaire et son suivi doivent, à l'avenir, être renforcés afin d'améliorer l'observance du traitement.

# 5.7 Exercices

Exercice 5.1 Gucci est une femelle berger allemand stérilisée de 9 ans et 40 kg (NEC 4/5, stable), peu active (moins d'une heure d'activité journalière) et souffrant d'arthrose. Elle est nourrie avec 280 g de Hill's j/d.

Estimez les besoins de Gucci pour lui faire perdre du poids tout en maintenant une action concernant l'arthrose. Puis conseillez la propriétaire sur un plan diététique adapté à Gucci.

Exercice 5.2 Critiquez la communication et la qualité de l'aliment suivant : "Eukanuba, Veterinary Diets, Joint Mobility".

### 5.8 Références

- [1] Elizabeth M LUND et al. "Prevalence and Risk Factors for Obesity in Adult Cats from Private US Veterinary Practices". In: 3.2 (2005), page 9 (cf. page 76).
- [2] Linda P. CASE et al. "Chapter 28 Development and Treatment of Obesity". In: Canine and Feline Nutrition (THIRD EDITION). Saint Louis: Mosby, 2011, pages 313-342. ISBN: 978-0-323-06619-8. URL: http://www.sciencedirect.com/science/article/pii/B9780323066198100283 (visité le 09/02/2016) (cf. pages 76, 77, 80).

- [3] Laurence COLLIARD et al. "Risk Factors for Obesity in Dogs in France". In: *J. Nutr.* 136.7 (7 jan. 2006), 1951S-1954S. ISSN: 0022-3166, 1541-6100. pmid: 16772466. URL: http://jn.nutrition.org/content/136/7/1951S (visité le 02/08/2017) (cf. page 76).
- [4] Elizabeth M LUND et al. "Prevalence and Risk Factors for Obesity in Adult Dogs from Private US Veterinary Practices". In: 4.2 (2006), page 10 (cf. page 76).
- [5] Laurence COLLIARD et al. "Prevalence and Risk Factors of Obesity in an Urban Population of Healthy Cats". In: *Journal of Feline Medicine and Surgery* 11.2 (1<sup>er</sup> fév. 2009), pages 135-140. ISSN: 1098-612X. DOI: 10.1016/j.jfms.2008.07.002 (cf. page 76).
- [6] J. Alberto Montoya-Alonso et al. "Prevalence of Canine Obesity, Obesity-Related Metabolic Dysfunction, and Relationship with Owner Obesity in an Obesogenic Region of Spain". In: *Front. Vet. Sci.* 4 (2017). ISSN: 2297-1769. DOI: 10.3389/fvets.2017.00059 (cf. pages 76, 77).
- [7] Daniel Fernández-Bergés et al. "Metabolic Syndrome in Spain: Prevalence and Coronary Risk Associated With Harmonized Definition and WHO Proposal. DARIOS Study". In: *Rev Esp Cardiol* 65.03 (1<sup>er</sup> mar. 2012), pages 241-248. ISSN: 1885-5857. DOI: 10.1016/j.rec. 2011.10.017 (cf. page 76).
- [8] Ryan MORRISON et al. "Correlates of Objectively Measured Physical Activity in Dogs". In: *The Veterinary Journal* 199.2 (1er fév. 2014), pages 263-267. ISSN: 1090-0233. DOI: 10.1016/j.tvjl.2013.11.023 (cf. page 76).
- [9] Michael G. HAYEK et Gary M. DAVENPORT. "Nutrition and Aging in Companion Animals". In: *Journal of Anti-Aging Medicine* 1.2 (1<sup>er</sup> jan. 1998), pages 117-123. ISSN: 1094-5458. DOI: 10.1089/rej.1.1998.1.117 (cf. page 76).
- [10] Guilhem DIVOL et Nathalie PRIYMENKO. "A New Model for Evaluating Maintenance Energy Requirements in Dogs: Allometric Equation from 319 Pet Dogs". In: *Journal of Nutritional Science* 6 (2017/ed). ISSN: 2048-6790. DOI: 10.1017/jns.2017.50 (cf. page 76).
- [11] Emma N. BERMINGHAM et al. "Energy Requirements of Adult Dogs: A Meta-Analysis". In: *PLOS ONE* 9.10 (14 oct. 2014), e109681. ISSN: 1932-6203. DOI: 10.1371/journal.pone.0109681 (cf. page 76).
- [12] Alexander J. GERMAN. "The Growing Problem of Obesity in Dogs and Cats". In: *J. Nutr.* 136.7 (7 jan. 2006), 1940S-1946S. ISSN: 0022-3166, 1541-6100. pmid: 16772464. URL: http://jn.nutrition.org/content/136/7/1940S (visité le 23/10/2017) (cf. page 76).
- [13] Patrick G. NGUYEN et al. "Effects of Dietary Fat and Energy on Body Weight and Composition after Gonadectomy in Cats". In: *American Journal of Veterinary Research* 65.12 (déc. 2004), pages 1708-1713. ISSN: 0002-9645. DOI: 10.2460/ajvr.2004.65.1708 (cf. page 76).
- [14] L. MARTIN et al. "Leptin, Body Fat Content and Energy Expenditure in Intact and Gonadectomized Adult Cats: A Preliminary Study". In: *J Anim Physiol Anim Nutr (Berl)* 85.7-8 (août 2001), pages 195-199. ISSN: 0931-2439. pmid: 11686788 (cf. page 76).
- [15] M. F. FLYNN, E. M. HARDIE et P. J. ARMSTRONG. "Effect of Ovariohysterectomy on Maintenance Energy Requirement in Cats". In: *J. Am. Vet. Med. Assoc.* 209.9 (1<sup>er</sup> nov. 1996), pages 1572-1581. ISSN: 0003-1488. pmid: 8899020 (cf. page 76).

[16] I. JEUSETTE et al. "Ad Libitum Feeding Following Ovariectomy in Female Beagle Dogs: Effect on Maintenance Energy Requirement and on Blood Metabolites". In: *J Anim Physiol Anim Nutr* (*Berl*) 88.3-4 (avr. 2004), pages 117-121. ISSN: 0931-2439. DOI: 10.1111/j. 1439-0396.2003.00467.x. pmid: 15059235 (cf. page 76).

- [17] Richard D. KEALY et al. "Effects of Diet Restriction on Life Span and Age-Related Changes in Dogs". In: *J. Am. Vet. Med. Assoc.* 220.9 (1<sup>er</sup> mai 2002), pages 1315-1320. ISSN: 0003-1488. pmid: 11991408 (cf. pages 76, 78).
- [18] Eleanor RAFFAN et al. "A Deletion in the Canine POMC Gene Is Associated with Weight and Appetite in Obesity-Prone Labrador Retriever Dogs". In: *Cell Metabolism* 23.5 (10 mai 2016), pages 893-900. ISSN: 1550-4131. DOI: 10.1016/j.cmet.2016.04.012 (cf. page 76).
- [19] Dana E. GERSTEIN et al. "Clarifying Concepts about Macronutrients' Effects on Satiation and Satiety". In: *Journal of the Academy of Nutrition and Dietetics* 104.7 (1<sup>er</sup> juil. 2004), pages 1151-1153. ISSN: 2212-2672. DOI: 10.1016/j.jada.2004.04.027 (cf. page 77).
- [20] A. WEI et al. "Influence of a High-Protein Diet on Energy Balance in Obese Cats Allowed Ad Libitum Access to Food". In: *Journal of Animal Physiology and Animal Nutrition* 95.3 (2011), pages 359-367. ISSN: 1439-0396. DOI: 10.1111/j.1439-0396.2010.01062.x (cf. pages 77, 81).
- [21] Amira KASSIS et al. "Effects of Protein Quantity and Type on Diet Induced Thermogenesis in Overweight Adults: A Randomized Controlled Trial". In: *Clinical Nutrition* (10 août 2018). ISSN: 0261-5614. DOI: 10.1016/j.clnu.2018.08.004 (cf. page 77).
- [22] M. S. WESTERTERP-PLANTENGA et al. "Satiety Related to 24 h Diet-Induced Thermogenesis during High Protein/Carbohydrate vs High Fat Diets Measured in a Respiration Chamber". In: *European Journal of Clinical Nutrition* 53.6 (juin 1999), page 495. ISSN: 1476-5640. DOI: 10.1038/sj.ejcn.1600782 (cf. page 77).
- [23] Alberto Muñoz-Prieto et al. "European Dog Owner Perceptions of Obesity and Factors Associated with Human and Canine Obesity". In: *Scientific Reports* 8.1 (6 sept. 2018), page 13353. ISSN: 2045-2322. DOI: 10.1038/s41598-018-31532-0 (cf. page 77).
- [24] G. A. WHITE et al. ""Who's Been a Good Dog?" Owner Perceptions and Motivations for Treat Giving". In: *Preventive Veterinary Medicine* 132 (15 sept. 2016), pages 14-19. ISSN: 0167-5877. DOI: 10.1016/j.prevetmed.2016.08.002 (cf. page 77).
- [25] Clarise LIM et Ryan E. RHODES. "Sizing up Physical Activity: The Relationships between Dog Characteristics, Dog Owners' Motivations, and Dog Walking". In: *Psychology of Sport and Exercise* 24 (mai 2016), pages 65-71. ISSN: 1469-0292. DOI: 10.1016/j.psychsport. 2016.01.004 (cf. page 77).
- [26] Alexander J. GERMAN et al. "Overweight Dogs Exercise Less Frequently and for Shorter Periods: Results of a Large Online Survey of Dog Owners from the UK". In: *Journal of Nutritional Science* 6 (jan. 2017). ISSN: 2048-6790. DOI: 10.1017/jns.2017.6 (cf. page 77).
- [27] Hayley E. CHRISTIAN et al. "Dog Ownership and Physical Activity: A Review of the Evidence". In: *Journal of Physical Activity and Health* 10.5 (1<sup>er</sup> juil. 2013), pages 750-759. ISSN: 1543-3080. DOI: 10.1123/jpah.10.5.750 (cf. page 77).

- [28] Christopher G. OWEN et al. "Family Dog Ownership and Levels of Physical Activity in Childhood: Findings From the Child Heart and Health Study in England". In: *Am J Public Health* 100.9 (1er sept. 2010), pages 1669-1671. ISSN: 0090-0036. DOI: 10.2105/AJPH. 2009.188193 (cf. page 77).
- [29] Herbert TILG et Alexander R. MOSCHEN. "Adipocytokines: Mediators Linking Adipose Tissue, Inflammation and Immunity". In: *Nature Reviews Immunology* 6.10 (oct. 2006), page 772. ISSN: 1474-1741. DOI: 10.1038/nri1937 (cf. page 78).
- [30] Giamila FANTUZZI. "Adipose Tissue, Adipokines, and Inflammation". In: *Journal of Allergy and Clinical Immunology* 115.5 (1<sup>er</sup> mai 2005), pages 911-919. ISSN: 0091-6749. DOI: 10.1016/j.jaci.2005.02.023 (cf. page 78).
- [31] I. M. FAUST, P. R. JOHNSON et J. HIRSCH. "Long-Term Effects of Early Nutritional Experience on the Development of Obesity in the Rat". In: *J. Nutr.* 110.10 (oct. 1980), pages 2027-2034. ISSN: 0022-3166. DOI: 10.1093/jn/110.10.2027. pmid: 7420206 (cf. page 78).
- [32] Rosa DIVELLA et al. "Obesity and Cancer: The Role of Adipose Tissue and Adipo-Cytokines-Induced Chronic Inflammation". In: *J Cancer* 7.15 (26 nov. 2016), pages 2346-2359. ISSN: 1837-9664. DOI: 10.7150/jca.16884. pmid: 27994674 (cf. page 78).
- [33] Vicki Jean ADAMS et al. "Exceptional Longevity and Potential Determinants of Successful Ageing in a Cohort of 39 Labrador Retrievers: Results of a Prospective Longitudinal Study". In: *Acta Veterinaria Scandinavica* 58 (2016), page 29. ISSN: 1751-0147. DOI: 10.1186/s13028-016-0206-7 (cf. page 78).
- [34] Vicki J ADAMS et al. "Evidence of Longer Life; a Cohort of 39 Labrador Retrievers". In: *Vet Rec* 182.14 (7 avr. 2018), page 408. ISSN: 0042-4900. DOI: 10.1136/vr.104167. pmid: 29483149 (cf. page 78).
- [35] Spencer A. JOHNSTON. "Osteoarthritis: Joint Anatomy, Physiology, and Pathobiology". In: *Veterinary Clinics: Small Animal Practice* 27.4 (1<sup>er</sup> juil. 1997), pages 699-723. ISSN: 0195-5616, 1878-1306. DOI: 10.1016/S0195-5616(97)50076-3. pmid: 9243777 (cf. page 78).
- [36] A. EGENVALL et al. "Gender, Age and Breed Pattern of Diagnoses for Veterinary Care in Insured Dogs in Sweden during 1996". In: *Veterinary Record* 146.19 (6 mai 2000), pages 551-557. ISSN: 0042-4900, 2042-7670. DOI: 10.1136/vr.146.19.551. pmid: 10839449 (cf. page 78).
- [37] L. I. SLINGERLAND et al. "Cross-Sectional Study of the Prevalence and Clinical Features of Osteoarthritis in 100 Cats". In: *The Veterinary Journal* 187.3 (1er mar. 2011), pages 304-309. ISSN: 1090-0233. DOI: 10.1016/j.tvjl.2009.12.014 (cf. page 78).
- [38] S. P. CLARKE et al. "Prevalence of Radiographic Signs of Degenerative Joint Disease in a Hospital Population of Cats". In: *Veterinary Record* 157.25 (17 déc. 2005), pages 793-799. ISSN: 0042-4900, 2042-7670. DOI: 10.1136/vr.157.25.793. pmid: 16361472 (cf. page 78).
- [39] Erlangga YUSUF et al. "Association between Weight or Body Mass Index and Hand Osteoarthritis: A Systematic Review". In: *Annals of the Rheumatic Diseases* 69.4 (1er avr. 2010), pages 761-765. ISSN: 0003-4967, 1468-2060. DOI: 10.1136/ard.2008.106930. pmid: 19487215 (cf. page 78).

[40] William H. ROBINSON et al. "Low-Grade Inflammation as a Key Mediator of the Pathogenesis of Osteoarthritis". In: *Nature Reviews Rheumatology* 12.10 (oct. 2016), pages 580-592. ISSN: 1759-4804. DOI: 10.1038/nrrheum.2016.136 (cf. page 79).

- [41] Carla R. SCANZELLO. "Role of Low-Grade Inflammation in Osteoarthritis". In: *Curr Opin Rheumatol* 29.1 (jan. 2017), pages 79-85. ISSN: 1040-8711. DOI: 10.1097/BOR. 0000000000000353. pmid: 27755180 (cf. page 79).
- [42] William G. MARSHALL et al. "The Effect of Weight Loss on Lameness in Obese Dogs with Osteoarthritis". In: *Vet Res Commun* 34.3 (1<sup>er</sup> mar. 2010), pages 241-253. ISSN: 0165-7380, 1573-7446. DOI: 10.1007/s11259-010-9348-7 (cf. page 80).
- [43] Steven C. BUDSBERG et Joseph W. BARTGES. "Nutrition and Osteoarthritis in Dogs: Does It Help?" In: *Veterinary Clinics of North America: Small Animal Practice* 36.6 (nov. 2006), pages 1307-1323. ISSN: 01955616. DOI: 10.1016/j.cvsm.2006.08.007 (cf. pages 80, 82).
- [44] I. G. OTTERNESS et al. "Exercise Protects against Articular Cartilage Degeneration in the Hamster". In: *Arthritis Rheum.* 41.11 (nov. 1998), pages 2068-2076. ISSN: 0004-3591. DOI: 10.1002/1529-0131(199811)41:11<2068::AID-ART23>3.0.C0;2-L. pmid: 9811063 (cf. pages 80, 82).
- [45] Hannah SARGENT et al. "What Is the Best Method of Estimating Energy Intake for Weight Loss in Obese Dogs?" In: *BSAVA Congress Proceedings 2016*. BSAVA Library, 2016, pages 471-472 (cf. page 80).
- [46] D. (Ralston Purina Company LAFLAMME. "Development and Validation of a Body Condition Score System for Cats: A Clinical Tool". In: Feline practice (Santa Barbara, Calif.: 1990) (USA) (1997). ISSN: 1057-6614. URL: http://agris.fao.org/agris-search/search.do?recordID=US1997053264 (visité le 29/11/2017) (cf. page 80).
- [47] D. (Ralston Purina Company LAFLAMME. "Development and Validation of a Body Condition Score System for Dogs". In: *Canine practice (Santa Barbara, Calif.: 1990) (USA)* (1997). ISSN: 1057-6622. URL: http://agris.fao.org/agris-search/search.do?recordID=US9742264 (visité le 29/11/2017) (cf. page 80).
- [48] Lisa FREEMAN et al. "WSAVA Nutritional Assessment Guidelines". In: *Journal of Small Animal Practice* 52.7 (2011), pages 385-396. ISSN: 1748-5827. DOI: 10.1111/j.1748-5827.2011.01079.x (cf. page 80).
- [49] Dianne I. MAWBY et al. "Comparison of Various Methods for Estimating Body Fat in Dogs". In: *Journal of the American Animal Hospital Association* 40.2 (1<sup>er</sup> mar. 2004), pages 109-114. ISSN: 0587-2871. DOI: 10.5326/0400109 (cf. page 80).
- [50] Charlotte R. BJORNVAD et al. "Evaluation of a Nine-Point Body Condition Scoring System in Physically Inactive Pet Cats". In: *American Journal of Veterinary Research* 72.4 (1<sup>er</sup> avr. 2011), pages 433-437. ISSN: 0002-9645. DOI: 10.2460/ajvr.72.4.433 (cf. page 80).
- [51] Marianne DIEZ et al. "Weight Loss in Obese Dogs: Evaluation of a High-Protein, Low-Carbohydrate Diet". In: *J Nutr* 132.6 (1<sup>er</sup> juin 2002), 1685S-1687S. ISSN: 0022-3166. DOI: 10.1093/jn/132.6.1685S (cf. page 81).
- [52] Mickaël WEBER et al. "A High-Protein, High-Fiber Diet Designed for Weight Loss Improves Satiety in Dogs". In: *Journal of Veterinary Internal Medicine* 21.6 (2007), pages 1203-1208. ISSN: 1939-1676. DOI: 10.1111/j.1939-1676.2007.tb01939.x (cf. pages 81, 82).

- [53] Alexander J. GERMAN et al. "A High Protein High Fibre Diet Improves Weight Loss in Obese Dogs". In: *The Veterinary Journal* 183.3 (1er mar. 2010), pages 294-297. ISSN: 1090-0233. DOI: 10.1016/j.tvjl.2008.12.004 (cf. page 81).
- [54] Dorothy P LAFLAMME et Steven S HANNAH. "Increased Dietary Protein Promotes Fat Loss and Reduces Loss of Lean Body Mass During Weight Loss in Cats". In: 3.2 (2005), page 7 (cf. page 81).
- [55] Ryan M YAMKA, Nolan Z FRANTZ et Kim G FRIESEN. "Effects of 3 Canine Weight Loss Foods on Body Composition and Obesity Markers". In: 5.3 (2007), page 8 (cf. page 81).
- [56] Wissam H. IBRAHIM et al. "Effects of Carnitine and Taurine on Fatty Acid Metabolism and Lipid Accumulation in the Liver of Cats during Weight Gain and Weight Loss". In: *Am. J. Vet. Res.* 64.10 (oct. 2003), pages 1265-1277. ISSN: 0002-9645. pmid: 14596465 (cf. page 81).
- [57] S. A. CENTER et al. "The Clinical and Metabolic Effects of Rapid Weight Loss in Obese Pet Cats and the Influence of Supplemental Oral L-Carnitine". In: *Journal of Veterinary Internal Medicine* 14.6 (2000), pages 598-608. ISSN: 1939-1676. DOI: 10.1111/j.1939-1676.2000.tb02283.x (cf. page 81).
- [58] Sharon A. CENTER et al. "Influence of Dietary Supplementation with L-Carnitine on Metabolic Rate, Fatty Acid Oxidation, Body Condition, and Weight Loss in Overweight Cats". In: American Journal of Veterinary Research 73.7 (27 juin 2012), pages 1002-1015. ISSN: 0002-9645. DOI: 10.2460/ajvr.73.7.1002 (cf. page 81).
- [59] Robert S. CHAPKIN et al. "Dietary Docosahexaenoic and Eicosapentaenoic Acid: Emerging Mediators of Inflammation". In: *Prostaglandins, Leukotrienes and Essential Fatty Acids*. Workshop on DHA as a Required Nutrient 81.2 (1<sup>er</sup> août 2009), pages 187-191. ISSN: 0952-3278. DOI: 10.1016/j.plefa.2009.05.010 (cf. page 81).
- [60] You Jung KIM et Hae Young CHUNG. "Antioxidative and Anti-Inflammatory Actions of Docosahexaenoic Acid and Eicosapentaenoic Acid in Renal Epithelial Cells and Macrophages". In: *Journal of Medicinal Food* 10.2 (1<sup>er</sup> juin 2007), pages 225-231. ISSN: 1096-620X. DOI: 10.1089/jmf.2006.092 (cf. page 81).
- [61] Saleta SIERRA et al. "Dietary Eicosapentaenoic Acid and Docosahexaenoic Acid Equally Incorporate as Decosahexaenoic Acid but Differ in Inflammatory Effects". In: *Nutrition* 24.3 (1<sup>er</sup> mar. 2008), pages 245-254. ISSN: 0899-9007. DOI: 10.1016/j.nut.2007.11.005 (cf. page 81).
- [62] Kimberly M. HEINEMANN et al. "Long-Chain (n-3) Polyunsaturated Fatty Acids Are More Efficient than α-Linolenic Acid in Improving Electroretinogram Responses of Puppies Exposed during Gestation, Lactation, and Weaning". In: J. Nutr. 135.8 (8 jan. 2005), pages 1960-1966. ISSN: 0022-3166, 1541-6100. pmid: 16046723. URL: http://jn.nutrition.org/content/135/8/1960 (visité le 08/02/2017) (cf. page 82).
- [63] Dale A. Fritsch et al. "A Multicenter Study of the Effect of Dietary Supplementation with Fish Oil Omega-3 Fatty Acids on Carprofen Dosage in Dogs with Osteoarthritis". In: *Journal of the American Veterinary Medical Association* 236.5 (1er mar. 2010), pages 535-539. ISSN: 0003-1488. DOI: 10.2460/javma.236.5.535 (cf. page 82).

[64] Stephen J. MEHLER et al. "A Prospective, Randomized, Double Blind, Placebo-Controlled Evaluation of the Effects of Eicosapentaenoic Acid and Docosahexaenoic Acid on the Clinical Signs and Erythrocyte Membrane Polyunsaturated Fatty Acid Concentrations in Dogs with Osteoarthritis". In: *Prostaglandins, Leukotrienes and Essential Fatty Acids (PLEFA)* 109 (1<sup>er</sup> juin 2016), pages 1-7. ISSN: 0952-3278. DOI: 10.1016/j.plefa.2016.03.015 (cf. page 82).

- [65] James K. ROUSH et al. "Evaluation of the Effects of Dietary Supplementation with Fish Oil Omega-3 Fatty Acids on Weight Bearing in Dogs with Osteoarthritis". In: *Journal of the American Veterinary Medical Association* 236.1 (2010), pages 67-73. URL: http://avmajournals.avma.org/doi/abs/10.2460/javma.236.1.67 (visité le 01/09/2017) (cf. page 82).
- [66] James K. ROUSH et al. "Multicenter Veterinary Practice Assessment of the Effects of Omega-3 Fatty Acids on Osteoarthritis in Dogs". In: *Journal of the American Veterinary Medical Association* 236.1 (1<sup>er</sup> jan. 2010), pages 59-66. ISSN: 0003-1488. DOI: 10.2460/javma. 236.1.59 (cf. page 82).
- [67] R. FERNANDEZ et S. F. PHILLIPS. "Components of Fiber Impair Iron Absorption in the Dog". In: *Am J Clin Nutr* 35.1 (1<sup>er</sup> jan. 1982), pages 107-112. ISSN: 0002-9165. DOI: 10.1093/ajcn/35.1.107 (cf. page 82).
- [68] George V. VAHOUNY et Marie M. CASSIDY. "Dietary Fibers and Absorption of Nutrients". In: *Proceedings of the Society for Experimental Biology and Medicine* 180.3 (1er déc. 1985), pages 432-446. ISSN: 0037-9727. DOI: 10.3181/00379727-180-42200 (cf. page 82).
- [69] Steven C. VLAD et al. "Glucosamine for Pain in Osteoarthritis: Why Do Trial Results Differ?" In: *Arthritis Rheum.* 56.7 (juil. 2007), pages 2267-2277. ISSN: 0004-3591. DOI: 10.1002/art.22728. pmid: 17599746 (cf. page 82).
- [70] J.-M. VANDEWEERD et al. "Systematic Review of Efficacy of Nutraceuticals to Alleviate Clinical Signs of Osteoarthritis". In: *Journal of Veterinary Internal Medicine* 26.3 (1er mai 2012), pages 448-456. ISSN: 1939-1676. DOI: 10.1111/j.1939-1676.2012.00901.x (cf. page 82).
- [71] Ruth M. SCOTT, Richard EVANS et Michael G. CONZEMIUS. "Efficacy of an Oral Nutraceutical for the Treatment of Canine Osteo Arthritis". In: *Vet Comp Orthop Traumatol* 30.5 (2017), pages 318-323. ISSN: 0932-0814, 2567-6911. DOI: 10.3415/VCOT-17-02-0020 (cf. page 82).
- [72] Philip ROUDEBUSH, William D. SCHOENHERR et Sean J. DELANEY. "An Evidence-Based Review of the Use of Therapeutic Foods, Owner Education, Exercise, and Drugs for the Management of Obese and Overweight Pets". In: *Journal of the American Veterinary Medical Association* 233.5 (1er sept. 2008), pages 717-725. ISSN: 0003-1488. DOI: 10.2460/javma. 233.5.717 (cf. pages 82, 85).
- [73] C. A. Tony BUFFINGTON. "External and Internal Influences on Disease Risk in Cats". In: *Journal of the American Veterinary Medical Association* 220.7 (avr. 2002), pages 994-1002. ISSN: 0003-1488. DOI: 10.2460/javma.2002.220.994 (cf. page 82).
- [74] Kathryn MICHEL et Margie SCHERK. "From Problem to Success: Feline Weight Loss Programs That Work". In: *Journal of Feline Medicine and Surgery* 14.5 (1<sup>er</sup> mai 2012), pages 327-336. ISSN: 1098-612X. DOI: 10.1177/1098612X12444999 (cf. page 83).

- [75] D. L. CLARKE et al. "Using Environmental and Feeding Enrichment to Facilitate Feline Weight Loss". In: *Journal of Animal Physiology and Animal Nutrition* 89.11-12 (2005), pages 427-427. ISSN: 1439-0396. DOI: 10.1111/j.1439-0396.2005.00611\_1.x (cf. page 83).
- [76] Julie Churchill. "Increase the Success of Weight Loss Programs by Creating an Environment for Change". In: *Compend Contin Educ Vet* 32.12 (déc. 2010), E1. ISSN: 1940-8315. pmid: 21882167 (cf. page 84).
- [77] Undine CHRISTMANN et al. "Effectiveness of a New Weight Management Food to Achieve Weight Loss and Maintenance in Client-Owned Obese Dogs". In: 13.2 (2015), page 13 (cf. page 85).
- [78] Undine CHRISTMANN et al. "Effectiveness of a New Dietetic Weight Management Food to Achieve Weight Loss in Client-Owned Obese Cats". In: *Journal of Feline Medicine and Surgery* 18.12 (1<sup>er</sup> déc. 2016), pages 947-953. ISSN: 1098-612X. DOI: 10.1177/1098612X15599823 (cf. page 85).
- [79] Undine CHRISTMANN et al. "Effectiveness of a New Dietetic Food to Achieve Weight Loss and to Improve Mobility in Client-Owned Obese Dogs with Osteoarthritis". In: 16.1 (2018), page 13 (cf. page 85).



Sébastien Lefebvre

### 6.1 Introduction

Le diabète mellitus est un terme regroupant un ensemble de maladies métaboliques caractérisées par un déficit de sécrétions d'induline et/ou de l'action de l'insuline<sup>1</sup>. Le diabète est la principale affection endocrinienne du chien et du chat. En raison de son incidence sur le métabolisme des nutriments et notamment sur celui des glucides, protéines et matières grasses, un accompagnement nutritionnel des animaux atteints de cette affection est un élément clef de la prise en charge. Ce chapitre présentera quelques éléments de l'épidémiologie du diabète et des facteurs de risque associé avant de décrire les éléments clefs de l'accompagnement nutritionnel et les propositions en termes d'alimentation industrielles.

Dans ce chapitre ne seront pas traitées la démarche diagnostique ou la prise en charge médicale.

# 6.2 Éléments généraux et épidémiologie

Bien que regroupé sous une même terminologie les diabètes félins et canins sont différents dans leur physiopathologie.

Par analogie avec les diabètes humains, le chien est plutôt (95%²) atteint d'un diabète proche du diabète de type 1 alors que celui du chat (80%²) serait plus proche d'un diabète de type 2. Ces différences de physiopathologie ont une conséquence sur la prise en charge nutritionnelle des diabètes. Depuis une trentaine d'années, il est observé une augmentation des cas de diabète chez le chien comme chez le chat³,⁴. Il est notable que cette augmentation soit aussi mise en évidence dans les populations humaines⁵.

### 6.2.1 Diabète canin

Le diabète le plus fréquent chez le chien est proche du diabète de type 1, marqué par un manque de sécrétion d'insuline dû à une destruction des cellules des îlots de Langerhans. Cette affection à une étiologie multifactorielle. Cependant, de nombreuses recherches tendent à mettre en avant une composante auto-immune pouvant prédisposer à ces diabètes. En effet, comme chez les patients humains atteints de diabète de type 1, les un grand nombre de chiens atteints présentent des anticorps contre les cellules des îlots de Langerhans<sup>6</sup>. De même, une association entre le diabète canin et certains haplotypes du complexe majeur d'histocompatibilité a été décrite<sup>7</sup>. Ce facteur génétique se retrouve dans une grande différence de sensibilité des différentes races de chien vis-à-vis du diabète<sup>8</sup>. Dans le tableau 6.2 sont présentées les races étant un facteur de risque vis-à-vis du diabète. D'autres études portant sur des populations de chiens assurés ou suivis dans les hôpitaux vétérinaires universitaires confirment cette la forte incidence du diabète dans certaines races<sup>8,9</sup>. De plus, les femelles peuvent aussi développer un diabète lors du dioestrus ou de la gestation 10,11. Ces diabètes canins se développent le plus souvent chez l'animal âgé (plus de 7 ans)<sup>3</sup>. En cela, ces diabètes, avec leur valence auto-immune et leur développement tardif, sont proches du diabète auto-immun latent de l'adulte, un diabète de type 1 humain avec une progression lente et dont les signes cliniques apparaissent à l'âge adulte. Ce diabète est, dans l'espèce humaine, beaucoup moins courant que le diabète de type 1 juvénile. Enfin, il semblerait qu'il y ait un lien entre les pancréatites chronique et la survenue de diabètes de type 1 chez le chien<sup>2</sup>.

Races prédisposées

Terrier australien

Schnauzer

Samoyède

Schnauzer Miniature

Fox terrier

Spitz loup

Bichon frisé

Cairn Terrier

Caniche miniature

Husky sibérien

Caniche toy

TABLE 6.2: Races prédisposées au diabète melitus<sup>12</sup>

Le diabète de type 2 lié à l'obésité est beaucoup moins classique chez le chien. Un chien atteint d'obésité peut présenter une insulinorésistance sans que le fonctionnement pancréatique ne soit atteint. En effet, il apparaît que les dépôts d'amyline présents dans le cas des diabètes de type 2 chez l'humain et le chat et qui conduisent à une destruction des cellules bêta du pancréas ne sont pas ou peu présents chez les chiens obèses insulinorésistant<sup>13</sup>. Ainsi, Verkest et al. ont décrit en 2012 des cas d'insulinorésistance induite par l'obésité chez le chien qui, même après plusieurs années, n'ont pas évolué en diabète de type 2<sup>14</sup>. Une hypothèse à cette particularité serait une absence de la diminution de sécrétion d'adiponectine par les adipocytes malgré l'insulinorésistance<sup>15</sup>. Ainsi les insulinorésistances du chien induites par l'obésité sont réversibles par retour au poids de forme, dans la majorité des cas.

### 6.2.2 Diabète félin

Le diabète félin est principalement représenté par un diabète de type 2 et ses facteurs de risque ne sont pas du même type que pour le diabète canin. Ainsi, bien que certaines races de chats semblent être plus à risque de développer un diabète (notamment les chats burmeses et norvégiens)<sup>16</sup>, le principal facteur de risque est l'obésité<sup>16</sup>, suivi par l'inactivité et l'absence d'accès à l'extérieur<sup>16,17</sup>. De plus, contrairement à ce qui est couramment avancé, ces derniers facteurs de risques sont bien plus déterminants que la composition de l'alimentation<sup>16,17</sup>.

L'une des grandes particularités du diabète félin est que, dans son stade précoce, il est réversible en un stade prédiabétique<sup>18-20</sup>.

# 6.3 Éléments clefs de l'accompagnement nutritionnel

L'accompagnement nutritionnel du diabète vise à aider la régulation de la glycémie des animaux atteints de diabètes de type 1 ou 2, voir à assurer une perte de poids dans le cas de diabète de type 2. Il est important de noter que l'une des grandes différences entre la prise en charge des animaux et des humains atteints de diabète est l'absence, dans la plupart des cas, de suivi de la glycémie de façon journalière. Ainsi, pour les animaux de compagnie la dose et les horaires des administrations d'insulines sont fixés à l'avance et n'évoluent qu'à l'occasion du suivi vétérinaire. Par conséquent il est important de réduire la variabilité de la glycémie d'un jour sur l'autre. Cela passe par une constance dans le contenu et la distribution de l'alimentation. Un changement dans la composition de l'aliment, la quantité d'énergie apportée spécifiquement par un nutriment ou le moment où l'animal est nourri pourrait dissocier les apports glucidiques et le traitement médicamenteux au détriment de l'animal.

De même, au vu de la difficulté d'assurer une alimentation constante en quantité et qualité avec une ration ménagère, ce type de rations n'est pas conseillée et doit être réalisé avec la plus grande vigilance.

### 6.3.1 Protéines

Les protéines sont un axe clef de l'accompagnement nutritionnel de l'animal diabétique. Dans le but de diminuer l'apport en glucide, il est nécessaire de remplacer cette source d'énergie. Or, dans les deux choix qui s'offrent à nous (lipides ou protéines), les protéines semblent les plus indiquées. Tout d'abord, les modifications métaboliques consécutives du diabète peuvent entraîner une amyotrophie par catabolisme des protéines et dans certains cas une perte protéique subséquente à une glomérulopathie<sup>21</sup>, il est important alors de rééquilibrer la balance azotée. De plus, l'apport en protéine a un effet sur la satiété, ce qui présente un intérêt dans le cas d'une alimentation qui vise réduire le poids ou à diminuer la polyphagie<sup>22</sup>. De plus, la glycémie assurée par la néoglucogenèse à partir d'acide aminé est plus stable durant la période post prandial qu'avec une alimentation riche en glucides. Enfin, ces alimentations riches en protéines permettent la mobilisation des acides gras et, par conséquent, la perte de la masse grasse, sans pour autant trop augmenter le risque d'acidocétose due à la cétogénèse<sup>21</sup>.

Il est important à mettre l'ensemble des recommandations diététique en regard avec les différentes comorbidités de l'animal. Ainsi, le risque des alimentations riches en protéine doit particulièrement être évalué en cas de pancréatite, d'insuffisance hépatique ou d'affection rénale.

### 6.3.2 Matières grasses

Les matières grasses ont un effet de ralentissement sur la vidange gastrique, ce qui pourrait présenter un intérêt pour moduler la glycémie postprandiale<sup>2</sup>. Cependant une augmentation de l'apport en matière grasse serait néfaste dans une optique de gestion du poids (augmentation de la densité énergétique de la ration). De plus compte tenu des modifications métaboliques, cette augmentation risquerait d'augmenter les risques de lipidose hépatique du chat et d'hypercholestérolémie. Enfin, il a été montré que les matières grasses favorisent l'insulinorésistance<sup>23</sup>. Ainsi, il est conseillé de réduire l'apport en matière grasse dans l'alimentation à destination d'animaux atteints de diabète. Il est cependant nécessaire de continuer à assurer un apport suffisant en acides gras essentiels.

# 6.3.3 Glucides

Dans un contexte de diabète, le but est souvent de limiter la quantité de glucides afin de limiter l'hyperglycémie postprandiale. Cependant, en plus du taux de glucide d'un aliment, il est aussi important de déterminer leur qualité et les propriétés de la source glucidique. Ainsi, l'ampleur de l'augmentation de la glycémie postprandiale ne sera pas la même selon que le type de glucide dans l'alimentation. Plus les glucides dans l'alimentation sont complexes, plus la glycémie postprandiale sera basse, notamment du fait du ralentissement du temps de la digestion<sup>24</sup>. Un autre élément à prendre en compte est les interactions avec d'autres éléments de l'alimentation comme les fibres, qui elles aussi peuvent diminuer la glycémie postprandiale. Par exemple, selon la céréale utilisée et le processus de fabrication de l'aliment, la réponse glycémique sera différente.

Chez l'humain, l'index glycémique des aliments est utilisé pour classer les aliments en fonction de la réponse glycémique obtenue<sup>24</sup>. Cette différence de réponse en fonction de la source de glucides est aussi remarquée chez le chien, y compris dans le cas d'aliments extrudés<sup>25</sup>.

L'approche diététique consistant à fournir une alimentation avec un faible apport glucidique combinée à un fort apport en protéine et un faible apport en matières grasses est, nonobstant les comorbidités contre-indiquant cette stratégie, celle permettant les meilleurs résultats. Notamment chez le chat où c'est elle qui offre les plus grandes chances de rémission <sup>19,21</sup>. Ainsi dans les recommandations de l' American Animal Hospital Association, pour le chat, c'est ce type d'alimentation qui doit être privilégié <sup>26</sup>.

### 6.3.4 Fibres

De nombreuses recherches ont été effectuées chez le chien afin de développer une stratégie d'accompagnement des animaux atteints de diabète basé sur une alimentation riche en fibre. Les résultats ont notamment mis en exergue l'importance des fibres solubles pour ralentir la digestion des glucides et ainsi moduler la réponse glycémique postprandiale et cela bien mieux que les fibres insolubles<sup>27</sup>, ce qui permet d'éviter les hyperglycémies postprandiales. D'autres articles décrivent l'action des fibres insolubles dans la normalisation de la glycémie postprandial, cependant il se pourrait que cette action soit liée à une diminution de la densité énergétique de la ration<sup>28</sup>. Ainsi, la stratégie misant sur une augmentation de l'apport en fibres peut être utilisée chez le chien en surpoids ou quand la diminution de l'apport en glucide ne peut être effectuées due à des commorbidités<sup>26</sup>. Pour le chat, bien que non préconisé, cette stratégie peut s'avérer utile en cas de comorbidité ne permettant pas une augmentation de l'apport en protéines<sup>29</sup>.

Le microbiote pourrait lui aussi jouer un rôle dans la régulation de la glycémie. Ainsi, la compréhension du rôle des fibres solubles et fermentescibles, qui sont des prébiotiques, est un enjeu majeur pour une meilleure régulation de la glycémie et pourrait ouvrir la voie à de nouveaux accompagne-

ments nutritionnel<sup>30</sup>.

### 6.4 Aliments commerciaux

Les aliments vétérinaires ayant l'objectif nutritionnel particulier de régules la glycémie et de prévenir les hyperglycémies se doivent de respecter les préconisation de la directive nnº 38/2008. Par la suite nous qualifierons ces aliments d'aliment « diabétique ». Ainsi, on peut noter une forte baisse de la densité énergétique des aliments diabétiques à destination du chien par rapport aux aliments physiologiques(Figure 6.1). Cet élément est à mettre au regard de leur forte teneur en cellulose brute (Figure ??). Pour ce qui est de la teneur en protéines, il existe une grande variabilité, cependant la majorité des produits à une teneur plus élevée que la gamme physiologique vétérinaire (Figure 6.2).

Concernant les aliments diabétiques pour chat, ils se distinguent par une forte teneur en protéines (Figure 6.2). Considérant leur densité énergétique, les aliments référencés ont une densité énergétique du même ordre que la gamme physiologique d'aliments vétérinaires (Figure 6.1). Ce dernier point peut, entre autres, s'expliquer par de forte teneur en protéine et matière grasse afin de réduire au minimum la quantité de glucides.

De façon générale les aliments référencés souhaitant couvrir l'objectif nutritionnel particulier répondent bien aux stratégies décrites précédemment. On notera, pour la plupart des indicateurs utilisés, une grande diversité d'aliment ce qui laisse la place au vétérinaire pour personnaliser sa prescription en fonction de la physiologie, l'environnement et les comorbidités de l'animal qu'il reçoit en consultation.

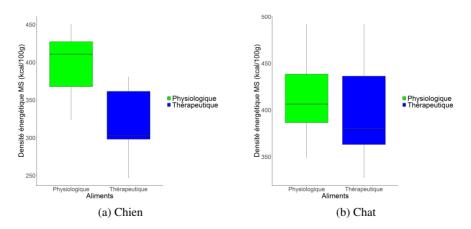



FIGURE 6.1: Densité énergétique en matière sèche des aliments diabétiques à destination du chien et du chat, par rapport aux aliments physiologiques de différents types de marques.

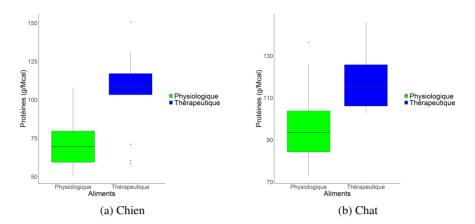



FIGURE 6.2: Apport en protéines des aliments diabétiques à destination du chien et du chat, par rapport aux aliments physiologiques de différents types de marques.

# 6.5 Conclusion

L'accompagnement diététique des animaux souffrants de diabète s'articule à la fois autour de stratégie sur la composition de l'alimentation dans le but de limiter les hyperglycémies postprandiales et sur une constance dans la façon d'alimenter les animaux. Il est essentiel de prendre en considération les comorbidités de l'individu dans le choix de l'aliment.

### 6.6 Exercice

Exercice 6.1 Chouquette est un chien mâle caniche stérilisée de 12 ans, pesant 3.1 kg (NEC : 1/5, 6kg à son poids idéal), sédentaire. Un diabète lui a été diagnostiqué il y a deux mois. Malgré l'insulinothérapie, la glycémie n'est pas stabilisée. Actuellement, il est nourri avec diverses croquettes de supermarché.

Quel ration à base d'aliment du commerce proposez vous à Chouquette ? Argumentez vos choix.

Exercice 6.2 Eclipse est un chat européen mâle stérilisé de 8 kg (NEC :5/5). Vous venez de lui diagnostiquer un diabète. Actuellement, il est nourri avec du Purina One chat stérilisé au bœuf (environ 65 g/jour)

Quelle prise en charge diététique proposez vous à Eclipse?

### 6.7 Références

- [1] "Diagnosis and Classification of Diabetes Mellitus". In: *Diabetes Care* 34 (Suppl 1 jan. 2011), S62-S69. ISSN: 0149-5992. DOI: 10.2337/dc11-S062. pmid: 21193628 (cf. page 95).
- [2] Linda P. CASE et al. "Chapter 29 Diabetes Mellitus". In: Canine and Feline Nutrition (THIRD EDITION). Saint Louis: Mosby, 2011, pages 343-358. ISBN: 978-0-323-06619-8. URL: http://www.sciencedirect.com/science/article/pii/B9780323066198100295 (visité le 06/12/2016) (cf. pages 95, 96, 98).

[3] L. GUPTILL, L. GLICKMAN et N. GLICKMAN. "Time Trends and Risk Factors for Diabetes Mellitus in Dogs: Analysis of Veterinary Medical Data Base Records (1970–1999)". In: *The Veterinary Journal* 165.3 (mai 2003), pages 240-247. ISSN: 10900233. DOI: 10.1016/S1090-0233(02)00242-3 (cf. pages 95, 96).

- [4] Annalisa PRAHL et al. "Time Trends and Risk Factors for Diabetes Mellitus in Cats Presented to Veterinary Teaching Hospitals". In: *Journal of Feline Medicine and Surgery* 9.5 (1<sup>er</sup> oct. 2007), pages 351-358. ISSN: 1098-612X. DOI: 10.1016/j.jfms.2007.02.004 (cf. page 95).
- [5] "Worldwide Trends in Diabetes since 1980: A Pooled Analysis of 751 Population-Based Studies with 4-4 Million Participants". In: *The Lancet* 387.10027 (9 avr. 2016), pages 1513-1530. ISSN: 0140-6736. DOI: 10.1016/S0140-6736(16)00618-8 (cf. page 95).
- [6] Margarethe HOENIG et D. L. DAWE. "A Qualitative Assay for Beta Cell Antibodies. Preliminary Results in Dogs with Diabetes Mellitus". In: *Veterinary Immunology and Immunopathology* 32.3 (1<sup>er</sup> mai 1992), pages 195-203. ISSN: 0165-2427. DOI: 10.1016/0165-2427 (92) 90046-S (cf. page 96).
- [7] L. J. KENNEDY et al. "Identification of Susceptibility and Protective Major Histocompatibility Complex Haplotypes in Canine Diabetes Mellitus". In: *Tissue Antigens* 68.6 (déc. 2006), pages 467-476. ISSN: 0001-2815. DOI: 10.1111/j.1399-0039.2006.00716.x. pmid: 17176436 (cf. page 96).
- [8] Tove FALL et al. "Diabetes Mellitus in a Population of 180,000 Insured Dogs: Incidence, Survival, and Breed Distribution". In: *J. Vet. Intern. Med.* 21.6 (2007 Nov-Dec), pages 1209-1216. ISSN: 0891-6640. pmid: 18196728 (cf. page 96).
- [9] Rebecka S. HESS, Philip H. KASS et Cynthia R. WARD. "Breed Distribution of Dogs with Diabetes Mellitus Admitted to a Tertiary Care Facility". In: *Journal of the American Veterinary Medical Association* 216.9 (1er mai 2000), pages 1414-1417. ISSN: 0003-1488. DOI: 10.2460/javma.2000.216.1414 (cf. page 96).
- [10] T. FALL et al. "Gestational Diabetes Mellitus in 13 Dogs". In: *Journal of Veterinary Internal Medicine* 22.6 (2008), pages 1296-1300. ISSN: 1939-1676. DOI: 10.1111/j.1939-1676.2008.0199.x (cf. page 96).
- [11] A. G. PÖPPL, T. S. MOTTIN et F. H. D. GONZÁLEZ. "Diabetes Mellitus Remission after Resolution of Inflammatory and Progesterone-Related Conditions in Bitches". In: *Research in Veterinary Science* 94.3 (1<sup>er</sup> juin 2013), pages 471-473. ISSN: 0034-5288. DOI: 10.1016/j.rvsc.2012.10.008 (cf. page 96).
- [12] Edward C. FELDMAN et al. *Canine and Feline Endocrinology E-Book*. Elsevier Health Sciences, 14 nov. 2014. 685 pages. ISBN: 978-1-4557-4457-2 (cf. page 96).
- [13] Leena HAATAJA et al. "Islet Amyloid in Type 2 Diabetes, and the Toxic Oligomer Hypothesis". In: *Endocr Rev* 29.3 (mai 2008), pages 303-316. ISSN: 0163-769X. DOI: 10.1210/er.2007-0037. pmid: 18314421 (cf. page 96).
- [14] K. R. VERKEST et al. "Spontaneously Obese Dogs Exhibit Greater Postprandial Glucose, Triglyceride, and Insulin Concentrations than Lean Dogs". In: *Domest. Anim. Endocrinol.* 42.2 (fév. 2012), pages 103-112. ISSN: 1879-0054. DOI: 10.1016/j.domaniend.2011. 10.002. pmid: 22130330 (cf. page 96).

- [15] K. R. VERKEST et al. "Distinct Adiponectin Profiles Might Contribute to Differences in Susceptibility to Type 2 Diabetes in Dogs and Humans". In: *Domest. Anim. Endocrinol.* 41.2 (août 2011), pages 67-73. ISSN: 1879-0054. DOI: 10.1016/j.domaniend.2011.03.003. pmid: 21600725 (cf. page 96).
- [16] M. ÖHLUND et al. "Environmental Risk Factors for Diabetes Mellitus in Cats". In: *J Vet Intern Med* 31.1 (1<sup>er</sup> jan. 2017), pages 29-35. ISSN: 1939-1676. DOI: 10.1111/jvim.14618 (cf. page 97).
- [17] L. I. SLINGERLAND et al. "Indoor Confinement and Physical Inactivity Rather than the Proportion of Dry Food Are Risk Factors in the Development of Feline Type 2 Diabetes Mellitus". In: *The Veterinary Journal* 179.2 (1er fév. 2009), pages 247-253. ISSN: 1090-0233. DOI: 10.1016/j.tvjl.2007.08.035 (cf. page 97).
- [18] G. FRANK et al. "Use of a High-Protein Diet in the Management of Feline Diabetes Mellitus." In: Vet Ther 2.3 (2001), pages 238-246. ISSN: 1528-3593. pmid: 19746667. URL: http://europepmc.org/abstract/med/19746667 (visité le 25/03/2019) (cf. page 97).
- [19] E. M. MAZZAFERRO et al. "Treatment of Feline Diabetes Mellitus Using an α-Glucosidase Inhibitor and a Low-Carbohydrate Diet". In: *Journal of Feline Medicine & Surgery* 5.3 (1<sup>er</sup> juin 2003), pages 183-189. ISSN: 1098-612X. DOI: 10.1016/S1098-612X(03)00006-8 (cf. pages 97, 98).
- [20] Richard W. NELSON et al. "Transient Clinical Diabetes Mellitus in Cats: 10 Cases (1989–1991)". In: *Journal of Veterinary Internal Medicine* 13.1 (1<sup>er</sup> jan. 1999), pages 28-35. ISSN: 0891-6640. DOI: 10.1111/j.1939-1676.1999.tb02161.x (cf. page 97).
- [21] Claudia A. KIRK. "Feline Diabetes Mellitus: Low Carbohydrates Versus High Fiber?" In: *Veterinary Clinics of North America: Small Animal Practice*. Dietary Management and Nutrition 36.6 (1<sup>er</sup> nov. 2006), pages 1297-1306. ISSN: 0195-5616. DOI: 10.1016/j.cvsm. 2006.09.004 (cf. pages 97, 98).
- [22] Brittany M. Vester BOLER et al. "Acute Satiety Response of Mammalian, Avian and Fish Proteins in Dogs". In: *British Journal of Nutrition* 107.1 (jan. 2012), pages 146-154. ISSN: 1475-2662, 0007-1145. DOI: 10.1017/S0007114511002261 (cf. page 97).
- [23] S. THIESS et al. "Effects of High Carbohydrate and High Fat Diet on Plasma Metabolite Levels and on Iv Glucose Tolerance Test in Intact and Neutered Male Cats". In: *Journal of Feline Medicine and Surgery* 6.4 (1<sup>er</sup> août 2004), pages 207-218. ISSN: 1098-612X. DOI: 10.1016/j.jfms.2003.09.006 (cf. page 98).
- [24] D. J. JENKINS et al. "Glycemic Index of Foods: A Physiological Basis for Carbohydrate Exchange". In: *Am J Clin Nutr* 34.3 (1<sup>er</sup> mar. 1981), pages 362-366. ISSN: 0002-9165. DOI: 10.1093/ajcn/34.3.362 (cf. page 98).
- [25] A. C. CARCIOFI et al. "Effects of Six Carbohydrate Sources on Dog Diet Digestibility and Post-Prandial Glucose and Insulin Response\*". In: *Journal of Animal Physiology and Animal Nutrition* 92.3 (2008), pages 326-336. ISSN: 1439-0396. DOI: 10.1111/j.1439-0396.2007.00794.x (cf. page 98).
- [26] Ellen Behrend et al. "2018 AAHA Diabetes Management Guidelines for Dogs and Cats". In: *Journal of the American Animal Hospital Association* 54.1 (jan. 2018), pages 1-21. ISSN: 0587-2871, 1547-3317. DOI: 10.5326/JAAHA-MS-6822 (cf. page 98).

[27] A. C. BLAXTER, P. J. CRIPPS et T. J. GRUFFYDD-JONES. "Dietary Fibre and Post Prandial Hyperglycaemia in Normal and Diabetic Dogs". In: *Journal of Small Animal Practice* 31.5 (1990), pages 229-233. ISSN: 1748-5827. DOI: 10.1111/j.1748-5827.1990.tb00790.x (cf. page 98).

- [28] R. W. NELSON et al. "Effects of Dietary Fiber Supplementation on Glycemic Control in Dogs with Alloxan-Induced Diabetes Mellitus." In: Am J Vet Res 52.12 (déc. 1991), pages 2060-2066. ISSN: 0002-9645. pmid: 1665025. URL: http://europepmc.org/abstract/med/1665025 (visité le 25/03/2019) (cf. page 98).
- [29] Richard W. NELSON et al. "Effect of Dietary Insoluble Fiber on Control of Glycemia in Cats with Naturally Acquired Diabetes Mellitus". In: *Journal of the American Veterinary Medical Association* 216.7 (1er avr. 2000), pages 1082-1088. ISSN: 0003-1488. DOI: 10. 2460/javma.2000.216.1082 (cf. page 98).
- [30] Cindy LE BOURGOT et al. "Fructo-Oligosaccharides and Glucose Homeostasis: A Systematic Review and Meta-Analysis in Animal Models". In: *Nutrition & Metabolism* 15.1 (25 jan. 2018), page 9. ISSN: 1743-7075. DOI: 10.1186/s12986-018-0245-3 (cf. page 99).



Sébastien Lefebvre

### 7.1 Introduction

La maladie rénale chronique (MRC) est un terme générique faisant référence à un déficit fonctionnel ou structurel de l'un ou des deux reins présent depuis plus de trois mois 1. De plus, cette perte de fonction est irréversible et progressive. L'accompagnement nutritionnel de cette affection est l'élément essentiel de la prise en charge thérapeutique. Cependant, bien qu'abondamment étudiée et décrite la prise en charge nutritionnelle conserve quelques zones d'ombres. Nous verrons dans ce chapitre que le soutien nutritionnel permet d'améliorer de façon notable la qualité de vie des animaux atteints et de ralentir la progression de la maladie sans pour autant remettre en cause son inexorable avancée.

De même que les précédents chapitres de nutrition clinique, nous ne traiterons pas ici (ou alors succinctement) du diagnostic ou de la prise en charge médicale.

# 7.2 Éléments généraux et épidémiologie

La MRC est une affection se déclarant le plus souvent chez l'animal âgé, bien qu'elle puisse survenir à tout âge. Sa prévalence est, sur l'ensemble de la population, estimée chez les animaux de compagnie entre 0.5 et 1.5%<sup>1</sup>. Dans une étude portant sur le chien, la prévalence a été estimée à 0.37%, à partir d'une base de données regroupant 89 cliniques (prévalence réelle obtenue par une approche bayésienne)<sup>2</sup>. La prévalence augmente fortement avec l'âge, passant à plus de 10% chez les chiens et 30% pour les chats<sup>3</sup>. Ainsi dans la précédente étude 89% des chiens atteints avaient plus de sept ans et 63% plus de douze<sup>2</sup>.

Plusieurs affections peuvent engendrer un déficit durable dans la structure rénale qui, après plus

ou moins de temps, aboutira à une maladie rénale chronique. Il est important de garder à l'esprit que terme maladie rénale chronique ne prend pas en compte l'origine du déficit de la fonction rénale.

Plusieurs étiologies congénitales de MRC sont à rapporter, certaine de ces étiologies sont plus fréquemment présente dans des races spécifiques : la polykystose rénale chez les chats persans ou les beagles, border collie et Cairn Terrier<sup>4</sup>, l'amyloïdose des Abyssins et Siamois; la maladie glomérulaire de l'Abyssin<sup>3,5</sup>...

De même, certaines races semblent être un facteur de risque de MRC, nonobstant les étiologies congénitales, notamment chez le chien, les Cavaliers King Charles et les Cocker Spaniel<sup>2</sup>. De plus, certaines affections ont aussi été associé avec la MRC, pour les chats peuvent être citées l'hyperthyroïdie<sup>6</sup>, les calculs urinaire<sup>7</sup> et les lymphomes rénaux<sup>8</sup>.

Si certains aliments industriels riches en protéines et déficitaires en potassium ont induit une MRC chez des chats<sup>9</sup>. Les recommandations actuelles de la FEDIAF tendent à limiter ce risque. Dans la partie traitant du phosphore, nous verrons que d'autres facteurs de risques nutritionnels pourraient exister

Le déficit fonctionnel rénal s'illustre, entre autres, par une baisse du taux de filtration glomérulaire, de la production de calcitriol et une diminution de la dégradation de la PTH. Ces éléments conduisent à une hyperparathyroïdie secondaire d'origine rénale. Ainsi, les mécanismes de régulation des minéraux sont perturbés, notamment ceux concernant le calcium et le phosphore. Ainsi, une des conséquences de la MRC est l'hyperphosphatémie accompagnée d'une décalcification osseuse. L'hyperphosphatémie serait l'une des causes de la progression de la MRC en favorisant la minéralisation rénale.

La baisse du taux de filtration glomérulaire aboutit aussi à un déficit dans l'élimination des composés azotés issu du catabolisme des protéines. Or ces composés azotés présentent une toxicité pour l'organisme est sont à l'origine de la majorité des symptômes de la MRC : Apathie, Hyporéxie, vomissement... Enfin cela s'accompagne aussi avec une baisse de la capacité à condenser les urines menant à une polyuropolydispsie.

De plus, l'équilibre acidobasique du sang est aussi perturbé chez les chiens et les chats atteints de MRC<sup>10</sup>. Par conséquent, les aliments induisant une baisse du pH urinaire sont à prohiber lors de MRC.

# 7.3 Éléments clefs de l'accompagnement nutritionnel.

L'accompagnement nutritionnel des animaux de compagnie atteints de MRC vise deux objectifs : améliorer la qualité de vie de l'animal et ralentir la progression de la maladie. Ces deux éléments impliquent une approche différente notamment du fait que la qualité de vie puisse être plus facilement évaluable que le ralentissement de la progression de la maladie. De même, il est à noter qu'en médecine vétérinaire comme en médecine humaine l'accompagnement nutritionnel est le principal axe thérapeutique. Cet axe est d'autant plus fondamental qu'en médecine vétérinaire le recours à la dialyse ou à la greffe est rare.

Outre les apports nutritionnels à proprement parler, il est nécessaire d'assurer un abreuvement suffisant pour compenser les pertes dues à la polyurie. Une des solutions est d'apporter une partie de cette eau par l'alimentation : croquettes mouillées, pâtés, courgettes. En plus de cet intérêt, l'alimentation humide est généralement plus appétente que les aliments secs ce qui permet de contourner l'hyporexie consécutive de l'azotémie. Les autres éléments pour augmenter l'appétence sans modifier la composition de l'aliment sont de le chauffer et de garantir sa fraîcheur. Chez le chien le fait de le nourrir directement à la main ou en présence de congénères peut aussi augmenter cette appétence. Le « gavage » est à proscrire, mais la pose d'une sonde d'alimentation doit être envisagée

si la prise alimentaire est insuffisante.

### 7.3.1 Protéines

La question des protéines et de leur rôle dans la survenue et l'évolution de la maladie rénale chronique a durant longtemps et reste de nos jours très discutée y compris dans la communauté scientifique. L'une des illustrations de ce questionnement sont les tribunes parues en 2016 dans Veterinary Clinics of North America : Small Animal Practice présentant la vision pour la restriction protéique<sup>11</sup> et celle contre<sup>12</sup>. Ces articles traitent plus particulièrement du chat, mais le raisonnement peut être étendu au chien. Ce débat existe aussi en médecine humaine<sup>13,14</sup>.

Pour comprendre la place particulière des protéines, il est important de bien différencier la progression de la maladie d'une part et ses conséquences cliniques d'autre part.

Considérant la progression de la maladie, dans les premiers temps de la recherche sur la maladie, une hypothèse dans sa progression a émergé. En effet, il est observable chez la majorité des mammifères qu'un repas riche en protéine engendre une augmentation postprandiale du débit sanguin rénal et du taux de filtration glomérulaire<sup>15,16</sup>. Ces découvertes ont permis de bâtir la théorie de l'hyperfiltration rénale et l'hypothèse de son rôle dans la progression de la maladie rénale chronique.

Cette théorie confirmait les recommandations de Thomas Addis sur l'importance de la restriction protéique chez l'humain pour ralentir la progression de la maladie<sup>17,18</sup>. De plus ces recommandations furent confirmées par une étude menée sur des rongeurs<sup>19</sup>. Cependant, il est important de prendre une certaine distance avec cette dernière étude et la théorie de l'hyperrfiltration<sup>20</sup>. En effet, à l'inverse de l'humain et du chien, les rats ont un comportement alimentaire de grignotage. Ainsi, la hausse du taux de filtration glomérulaire induite par une alimentation riche en protéine sera plus étalée dans le temps. De plus, un biais peut être présent dans l'étude sur les rats. En effet, le groupe contrôle a absorbé moins d'énergie que le groupe ayant une alimentation riche en protéine, or il a été mis en évidence qu'une restriction énergétique pouvait être bénéfique pour le ralentir la progression de la maladie <sup>20,21</sup>. Ainsi, chez le chien, aucun lien n'a été mis en évidence entre la progression de la maladie et une restriction en protéines<sup>20,22-24</sup>. Chez le chat, les mêmes observations que chez le chien ont été faites<sup>20,25</sup>. Il est à noter que, en raison du lien qu'il peut y avoir entre la teneur en protéine et celle en phosphore, il est parfois difficile de différencier les effets de chacun dans la progression de la maladie rénale chronique<sup>26</sup>.

Considérant la clinique, l'approche est bien différente. En effet, le catabolisme des protéines est responsable d'un apport de composés azotés dans le sang (urée, ammoniaque..) qui, en cas de maladie rénale chronique, sont moins éliminés par les reins. Ainsi, un apport trop important en protéines, qui plus est de faible valeur biologique, peut augmenter l'azotémie et aboutir à une morbidité et une mortalité plus importantes<sup>24</sup>. Ainsi, il y a un intérêt à moduler l'apport en protéine en fonction de la clinique. Et plus particulièrement à limiter le catabolisme des protéines en évitant les excès en acides aminés, qui ne seraient pas utilisés pour la synthèse protéique.

Cependant, une baisse trop importante de l'apport en protéine, qui plus est si leur digestibilité et leur valeur biologique ne sont pas suffisantes, risque de conduire, entre autres, à une inappétence de la ration et à un catabolisme des protéines endogène. L'inappétence diminue l'ingestion de la ration, augmente le déficit en protéine et peut conduire à d'autres carences notamment en potassium. De plus, une anorexie consécutive de la faible appétence de la ration aboutit des modifications du pH sanguin ce qui peut favoriser la progression de l'affection rénale. Enfin, le catabolisme des protéines endogène diminue la masse maigre de l'animal et engendre une augmentation de l'azotémie.

Par conséquent, il est nécessaire de garantir la bonne appétence de la ration et une bonne couverture des besoins en acides aminés essentiels. Cette nécessité est d'autant plus importante chez l'animal jeune, où le succès de la gestion de l'affection tient à un apport suffisamment élevé en protéines pour assurer la croissance<sup>27</sup>. Les protéines doivent être choisies dans le but de limiter tout catabolisme inutile ou mobilisation des protéines endogènes. Dans cette perspective, une analyse de la valeur biologique des aliments semble intéressante, cependant actuellement peu d'industriels donnent accès à leurs aminogrammes. Cependant, tant que l'azotémie est suffisamment légère, il ne semble pas y avoir d'intérêt à réduire l'apport en protéine<sup>28</sup>.

Ainsi, l'auteur ne conseille pas une restriction systématique de l'apport en protéine. La restriction protéique ne devrait survenir qu'au regard de l'évolution clinique et à la suite d'une analyse bénéfice-risque. Les rations ménagères sont particulièrement indiquées dans les cas où l'apport protéique doit être important malgré l'affection rénale : croissance, diabète.

### 7.3.2 Phosphore

Le phosphore est l'élément clef de la gestion nutritionnelle de la maladie rénale chronique. Tout d'abord, du fait de la physiopathologie de la maladie rénale (baisse du taux de filtration glomérulaire, diminution de la synthèse de calcitriol et de la dégradation de la PTH) l'homéostasie du phosphore est perturbée ce qui induit un risque d'hyperphosphatémie.

Limiter l'hyperphosphatémie est un objectif majeur pour ralentir la progression de la maladie. En effet, cela permet de moduler l'hyperparathyroïdie et la néphrocalcinose<sup>29-31</sup>. Ainsi, la restriction en phosphore a montré son efficacité dans l'augmentation de la durée de vie du chien et du chat atteint de MRC<sup>31-34</sup>. Lorsque la restriction en phosphore alimentaire n'est pas suffisante pour maintenir la phosphatémie dans les normes, des inhibiteurs de l'absorption du phosphore peuvent être utilisés<sup>35</sup>. Le tableau 7.2 présente les inhibiteurs les plus courants. Cependant, depuis l'arrêt du Rénalzin en 2015, il n'existe plus de chélateur du phosphore au sens strict en médecine vétérinaire. Les autres ne sont pas des chélateurs de phosphore, mais contiennent du calcium permettant d'augmenter le rapport phosphocalcique, ce qui diminue la digestibilité du phosphore<sup>36</sup> par formation de Ca<sub>3</sub>(PO)<sub>2</sub> insoluble<sup>37</sup>. Ces inhibiteurs s'utilisent à effet et ne peuvent remplacer une alimentation pauvre en phosphore. Il est à noter que des cas d'excès en calcium peuvent survenir. Enfin, la principale limite à l'emploi de ces inhibiteurs est leur inappétence<sup>38</sup>.

| Nom                  | Société    | Forme   | Espèce de   | Inhibiteur                                                 | Autres mo-              | Publications |
|----------------------|------------|---------|-------------|------------------------------------------------------------|-------------------------|--------------|
|                      |            |         | destination |                                                            | lécules                 |              |
| Renalzin<br>(arrété) | Bayer      | Pate    | Chat        | Lanthane                                                   | Kaolin, vi-<br>tamine E | [39]         |
| Ipakitine            | Vetoquinol | Poudre  | Chien, chat | Carbonate de calcium                                       | Chitosan                | [40]         |
| Rénosan              | VetExpert  | Capsule | Chien, chat | Carbonate de calcium                                       | Chitosan,<br>Vitamine D |              |
| Pronefra             | Virbac     | Liquide | Chien, chat | Carbonate<br>de calcium/<br>Carbonate<br>de magné-<br>sium | Chitosan                | [41, 42]     |

TABLE 7.2: Inhibiteur de l'absorption du phosphore les plus employés et les publications appuyant leur efficacité

L'auteur conseille d'apporter moins de 1 g/Mcal BEE de phosphore chez le chat et moins de 1.2 g/Mcal BEE pour le chien. De plus, de récents articles tendent à montrer qu'un apport excessif en phosphore alimentaire pourrait augmenter le risque de développer une MRC chez le chat, mais pas le chien<sup>26,43</sup>. Ce risque est aussi à moduler en fonction de la source de phosphore choisie. Le phosphore inorganique hautement digestible serait le plus néfaste pour la fonction rénale<sup>44,45</sup>. Cependant, actuellement, il n'est pas possible de connaître la qualité du phosphore utilisé dans un aliment. Ainsi, l'auteur conseille de ne pas dépasser un apport de 1.5g/Mcal BEE chez le chat âgé sain.

# 7.3.3 Matières grasses

L'hyperlipidémie peut être une comorbidité des maladies rénales chroniques. Or l'hyperlipidémie est associée à la progression de la maladie rénale chronique et, dans certaines espèces, au syndrome urémique<sup>20,46</sup>. Cette dyslipidémie peut être améliorée chez le chien par l'apport d'oméga 3<sup>47</sup>. De plus, cette administration d'oméga 3 polyinsaturés à chaîne longue (acide eicosapentaénoïque et acide docosahexaénoïque), notamment en étant compétiteur de l'acide arachidonique, aurait un effet de protecteur rénal. Cette action passe par une amélioration de l'hémodynamique rénale, une diminution de l'inflammation rénale et une diminution de l'agrégation plaquettaire.

L'impact positif des oméga 3 polyinsaturés à chaîne longue a été mis en évidence dans plusieurs études 47,48. Dans ces études, la survie des animaux supplémentés en oméga 3 était significativement plus importante que celle des animaux recevant des acides gras saturés. Dans une autre étude, cet effet bénéfique semble être synergique avec l'action d'antioxydants 40. Enfin, dans une étude rétrospective comparant l'efficacité de plusieurs aliments rénaux chez le chat, celui permettant la survit la plus importante est aussi celui étant le plus riche en acide eicosapentaénoïque 31.

#### **7.3.4** Fibres

Les reins ne sont pas le seul organe capable d'éliminer les composés azotés, ceux-ci peuvent aussi être éliminés par diffusion dans le colon. Une fois ces composés azotés dans la lumière intestinale, ceux-ci sont métabolisés par le microbiote en acides aminés puis éliminés avec les fèces ou réabsorbés. Dans le but de potentialiser ce mode d'élimination et de limiter l'azotémie, il est possible d'apporter des fibres solubles fermentescibles. Ces fibres induisent une croissance des populations bactériennes du colon, augmentent son activité, sa masse, sa surface et son flux sanguin. Ces modifications au niveau du colon aboutissent à une augmentation de l'excrétion de composés azotés au niveau du colon<sup>49</sup>. Une récente métaanalyse a confirmé l'intérêt de cette approche chez l'homme<sup>50</sup>. Les résultats obtenus chez le chien semblent indiquer que les mêmes mécanismes sont en jeux et que cette approche est efficace.

De plus l'augmentation du métabolisme bactérien permet une augmentation de l'absorption du propionate. Or le propionate permet de réaliser de la néoglucogenèse et ainsi diminue l'utilisation d'acides aminés pour ce propos chez le chien<sup>51</sup>.

#### 7.3.5 Autres nutriments

D'autres nutriments sont à prendre en compte afin de contourner les conséquences des dysfonctionnements rénaux. Notamment, des hypokaliémies sont rapportées chez de nombreux chats souffrants de MRC, ce paramètre est à surveiller et une complémentation peut être nécessaire. De même, un apport augmenté en vitamine E et C (antioxydants) semble aussi bénéfique pour diminuer le stress oxydatif présent au niveau de néphrons<sup>5253</sup>.

# 7.4 Aliments commerciaux

Les aliments commerciaux intègrent, de manière générale, la plupart des recommandations avancées dans les publications. Ainsi, les aliments indiqués pour animaux atteints de MRC sont des aliments denses en énergie (Figure 7.1). Cette densité énergétique permet de réduire l'apport en matière sèche tout en assurant un apport énergétique suffisant, malgré des animaux pouvant être hyporexique. Dans cette même optique les gammes humides, notamment chez le chat sont assez développées. L'humidité permet à la fois d'augmenter l'apport en eau et l'appétence dans la plupart des cas.

Concernant les protéines, les aliments répondant à l'indication ont un apport assez faible (Figure 7.2). Ce faible apport est notamment permis par une haute valeur biologique de ces protéines, complété par des acides aminés, permettant de couvrir les besoins minimums en acides aminés essentiels. Parallèlement à cette baisse de l'apport en protéine, ces aliments sont aussi ceux contenant le moins de phosphore.

Enfin, l'apport de ces aliments en oméga 3 est le facteur offrant le plus de variation notamment chez le chien (Figure 7.3). L'une des limites de cette figure est qu'elle ne précise pas la qualité des oméga 3. Cependant, les aliments indiquant dans leurs constituants analytiques un apport en EPA et DHA montrent qu'il est en moyenne plus élevé que les gammes physiologiques.

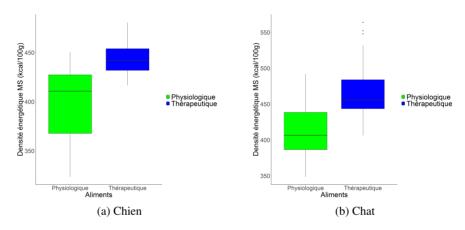



FIGURE 7.1: Densité énergétique en matière sèche des aliments MRC à destination du chien et du chat, par rapport aux aliments physiologiques de différents types de marques.

Conclusion 111

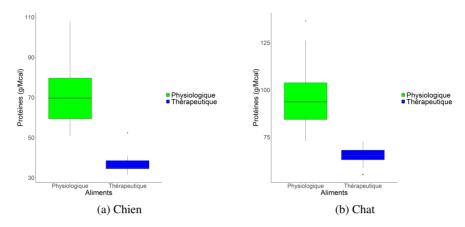



FIGURE 7.2: Apport en protéines des aliments MRC à destination du chien et du chat, par rapport aux aliments physiologiques de différents types de marques.

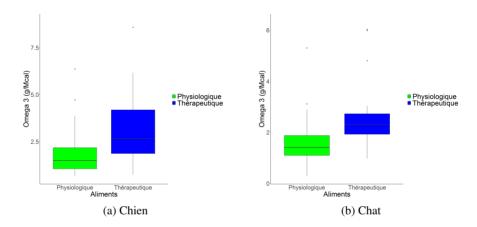



FIGURE 7.3: Apport en Oméga 3 des aliments MRC à destination du chien et du chat, par rapport aux aliments physiologiques de différents types de marques.

De nombreuses études ont montré l'efficacité des aliments industriels<sup>31-34,54</sup>. Ceux-ci permettant une augmentation de la durée de vie et une amélioration de la qualité de vie des animaux alimentés. Ainsi, la figure 7.4, issu des données de Plantinga et al.<sup>31</sup>, met en exergue cette efficacité. En effet, les aliments spécifiques permettent de passer d'une médiane de survie de 9 mois pour les aliments standard, à 18 mois pour les aliments avec des teneurs réduites en phosphore et jusqu'à 30 mois pour les aliment avec une teneur réduite en phosphore et enrichis en acide eicosapentaénoïque<sup>31</sup>.

Nonobstant cette indéniable efficacité, de l'avis de l'auteur, ces aliments offrent peu de diversité, notamment considérant l'apport en protéine, ce qui limite la possibilité d'ajuster l'alimentation en fonction de l'évolution clinique ou des comorbidités.

## 7.5 Conclusion

L'accompagnement diététique des animaux souffrants de MRC doit prendre en compte plusieurs approches pour réduire la progression de la maladie (phosphore, oméga 3..) et limiter la survenue

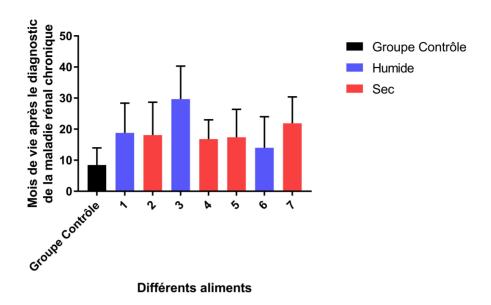



FIGURE 7.4: Medianes de survie après diagnostic de chats souffrant de MRC nourris avec soit des aliments standards (groupe contrôle) soit des aliments avec un objectif nutritionnel particulier pour la maladie rénale chronique. Les aliments rouges sont des aliments sec et les bleus des aliments humides. Il est a noté que l'aliment 3 était, à l'époque, le seul à contenir de l'acide eicosapataénoïque (omega 3 à chaine longue). Depuis, quasiment tous les aliments pour cette indication sont complémentés.

d'épisode clinique (protéines, phosphore, fibres). La gestion de cette affection est l'un des plus grands succès de la nutrition clinique vétérinaire.

# 7.6 Exercices

Exercice 7.1 Guizmo est un chat européen mâle stérilisé de 11 ans pesant 4.3 kg (NEC 3/5), vivant en intérieur. Vous lui avez diagnostiqué une MRC stade IRIS 1.

Il est nourri avec 50g de Animonda vom Feinsten Deluxe Adult, truite pour chat.

Proposez lui une ration industrielle adaptée. Quels sont vos conseils? Son propriétaire souhaite lui fournir une ration ménagère. Proposez lui une recette. Quels sont vos conseils?

Exercice 7.2 Pulco est un labrador de 2 ans, non stérilisé, de 28kg (NEC 3/5). Il a une à deux heures d'activité par jour. Pulco souffre de dysplasie rénale. Depuis le diagnostic à la suite d'un épisode d'urémie, il est nourri avec 300g de Hill's k/d. Cependant la propriétaire le trouve moins vif et rapporte des problèmes de satiété.

Ouelles adaptation à la ration de Pulco proposez vous d'apporter?

Exercice 7.3 Joby est un chien labrador mâle de 5 mois, de 17 kg (NEC 3/5, poids de la mère : 30kg). Il souffre d'une dysplasie rénale congénitale, aujourd'hui ses résultats biochimiques

indiquent un stade IRIS 2.

Le propriétaire souhaite que Joby reste sur une alimentation commerciale. Que lui proposezvous ? Quels sont vos points d'attention ?

# 7.7 Références

- [1] Joseph W. BARTGES. "Chronic Kidney Disease in Dogs and Cats". In: *Veterinary Clinics: Small Animal Practice* 42.4 (1<sup>er</sup> juil. 2012), pages 669-692. ISSN: 0195-5616, 1878-1306. DOI: 10.1016/j.cvsm.2012.04.008. pmid: 22720808 (cf. page 105).
- [2] D. G. O'NEILL et al. "Chronic Kidney Disease in Dogs in UK Veterinary Practices: Prevalence, Risk Factors, and Survival". In: *Journal of Veterinary Internal Medicine* (2018), pages 814-821. ISSN: 1939-1676. DOI: 10.1111/jvim.12090@10.1111/19391676. mexicotoparticles (cf. pages 105, 106).
- [3] Joe Bartges et David James Polzin, éditeurs. *Nephrology and Urology of Small Animals*. OCLC: ocn645598139. Chichester, West Sussex, UK; Ames, Iowa: Wiley-Blackwell, 2011. 904 pages. ISBN: 978-0-8138-1717-0 978-0-470-95881-0 978-0-470-95888-9 (cf. pages 105, 106).
- [4] George E. LEES. "Congenital Renal Diseases". In: *Veterinary Clinics of North America: Small Animal Practice* 26.6 (1<sup>er</sup> nov. 1996), pages 1379-1399. ISSN: 0195-5616. DOI: 10.1016/S0195-5616(96)50133-6 (cf. page 106).
- [5] Brice S REYNOLDS et Hervé P LEFEBVRE. "Feline CKD: Pathophysiology and Risk Factors What Do We Know?" In: *Journal of Feline Medicine and Surgery* 15 (1\_suppl 1er sept. 2013), pages 3-14. ISSN: 1098-612X. DOI: 10.1177/1098612X13495234 (cf. page 106).
- [6] Ingrid van HOEK et Sylvie DAMINET. "Interactions between Thyroid and Kidney Function in Pathological Conditions of These Organ Systems: A Review". In: *General and Comparative Endocrinology* 160.3 (fév. 2009), pages 205-215. ISSN: 00166480. DOI: 10.1016/j.ygcen. 2008.12.008 (cf. page 106).
- [7] Andrew E. KYLES et al. "Management and Outcome of Cats with Ureteral Calculi: 153 Cases (1984-2002)". In: *J. Am. Vet. Med. Assoc.* 226.6 (15 mar. 2005), pages 937-944. ISSN: 0003-1488. pmid: 15786997 (cf. page 106).
- [8] Lj Gabor, Pj Canfield et R. Malik. "Haematological and Biochemical Findings in Cats in Australia with Lymphosarcoma". In: *Australian Veterinary Journal* 78.7 (2000), pages 456-461. ISSN: 1751-0813. DOI: 10.1111/j.1751-0813.2000.tb11856.x (cf. page 106).
- [9] S. P. DIBARTOLA et al. "Development of Chronic Renal Disease in Cats Fed a Commercial Diet". In: *J. Am. Vet. Med. Assoc.* 202.5 (1er mar. 1993), pages 744-751. ISSN: 0003-1488. pmid: 8454506 (cf. page 106).
- [10] J. ELLIOTT, H. M. SYME et P. J. MARKWELL. "Acid-Base Balance of Cats with Chronic Renal Failure: Effect of Deterioration in Renal Function". In: *Journal of Small Animal Practice* 44.6 (2003), pages 261-268. ISSN: 1748-5827. DOI: 10.1111/j.1748-5827. 2003.tb00153.x (cf. page 106).

- [11] David J. POLZIN et Julie A. CHURCHILL. "Controversies in Veterinary Nephrology: Renal Diets Are Indicated for Cats with International Renal Interest Society Chronic Kidney Disease Stages 2 to 4: The Pro View". In: *Veterinary Clinics of North America: Small Animal Practice*. Chronic Kidney Disease 46.6 (1er nov. 2016), pages 1049-1065. ISSN: 0195-5616. DOI: 10.1016/j.cvsm.2016.06.005 (cf. page 107).
- [12] Margie A. SCHERK et Dottie P. LAFLAMME. "Controversies in Veterinary Nephrology: Renal Diets Are Indicated for Cats with International Renal Interest Society Chronic Kidney Disease Stages 2 to 4: The Con View". In: *Veterinary Clinics of North America: Small Animal Practice*. Chronic Kidney Disease 46.6 (1er nov. 2016), pages 1067-1094. ISSN: 0195-5616. DOI: 10.1016/j.cvsm.2016.06.007 (cf. page 107).
- [13] T. Alp IKIZLER. "Dietary Protein Restriction in CKD: The Debate Continues". In: *American Journal of Kidney Diseases* 53.2 (1er fév. 2009), pages 189-191. ISSN: 0272-6386, 1523-6838. DOI: 10.1053/j.ajkd.2008.12.014 (cf. page 107).
- [14] Carmine ZOCCALI et Francesca MALLAMACI. "Moderator's View: Low-Protein Diet in Chronic Kidney Disease: Effectiveness, Efficacy and Precision Nutritional Treatments in Nephrology". In: *Nephrol Dial Transplant* 33.3 (1er mar. 2018), pages 387-391. ISSN: 0931-0509. DOI: 10.1093/ndt/gfx374 (cf. page 107).
- [15] Jacques J. BOURGOIGNIE et al. "Glomerular Function and Morphology after Renal Mass Reduction in Dogs". In: *The Journal of Laboratory and Clinical Medicine* 109.4 (1<sup>er</sup> avr. 1987), pages 380-388. ISSN: 0022-2143, 1532-6543. DOI: 10.5555/uri:pii:0022214387901089 (cf. page 107).
- [16] B. M. Brenner, T. W. Meyer et T. H. Hostetter. "Dietary Protein Intake and the Progressive Nature of Kidney Disease: The Role of Hemodynamically Mediated Glomerular Injury in the Pathogenesis of Progressive Glomerular Sclerosis in Aging, Renal Ablation, and Intrinsic Renal Disease". In: *N. Engl. J. Med.* 307.11 (9 sept. 1982), pages 652-659. ISSN: 0028-4793. DOI: 10.1056/NEJM198209093071104. pmid: 7050706 (cf. page 107).
- [17] Thomas ADDIS. "Glomerular Nephritis: Diagnosis and Treatment". In: *JAMA* 138.4 (25 sept. 1948), pages 327-327. ISSN: 0002-9955. DOI: 10.1001/jama.1948.02900040071027 (cf. page 107).
- [18] E. C. PERSIKE et T. ADDIS. "Food Protein Consumption in Glomerulonephritis; Effect on Proteinuria and the Concentration of Serum Protein". In: *Arch Intern Med (Chic)* 81.5 (mai 1948), pages 612-622. ISSN: 0730-188X. pmid: 18106255 (cf. page 107).
- [19] E. J. MASORO et al. "Dietary Modulation of the Progression of Nephropathy in Aging Rats: An Evaluation of the Importance of Protein". In: *Am J Clin Nutr* 49.6 (1<sup>er</sup> juin 1989), pages 1217-1227. ISSN: 0002-9165. DOI: 10.1093/ajcn/49.6.1217 (cf. page 107).
- [20] Linda P. CASE et al. "Chapter 32 Chronic Renal Failure". In: Canine and Feline Nutrition (THIRD EDITION). Saint Louis: Mosby, 2011, pages 409-430. ISBN: 978-0-323-06619-8. URL: http://www.sciencedirect.com/science/article/pii/B9780323066198100325 (visité le 06/12/2016) (cf. pages 107, 109).
- [21] Sarah M. TUCKER, Rossie L. MASON et Roy E. BEAUCHENE. "Influence of Diet and Feed Restriction on Kidney Function of Aging Male Rats". In: *J Gerontol* 31.3 (1er mai 1976), pages 264-270. ISSN: 0022-1422. DOI: 10.1093/geronj/31.3.264 (cf. page 107).

[22] K. C. BOVÉE et al. "Long-Term Measurement of Renal Function in Partially Nephrectomized Dogs Fed 56, 27, or 19% Protein." In: *Invest Urol* 16.5 (mar. 1979), pages 378-384. ISSN: 0021-0005. pmid: 429135. URL: http://europepmc.org/abstract/med/429135 (visité le 07/04/2019) (cf. page 107).

- [23] D. J. POLZIN et al. "Influence of Reduced Protein Diets on Morbidity, Mortality, and Renal Function in Dogs with Induced Chronic Renal Failure". In: (mar. 1984). pmid: 6711979 (cf. page 107).
- [24] John L. ROBERTSON et al. "Long-Term Renal Responses to High Dietary Protein in Dogs with 75% Nephrectomy". In: *Kidney International* 29.2 (1<sup>er</sup> fév. 1986), pages 511-519. ISSN: 0085-2538. DOI: 10.1038/ki.1986.29 (cf. page 107).
- [25] D. R. FINCO et al. "Protein and Calorie Effects on Progression of Induced Chronic Renal Failure in Cats". In: *Am. J. Vet. Res.* 59.5 (mai 1998), pages 575-582. ISSN: 0002-9645. pmid: 9582959 (cf. page 107).
- [26] L. F. BÖSWALD, E. KIENZLE et B. DOBENECKER. "Observation about Phosphorus and Protein Supply in Cats and Dogs Prior to the Diagnosis of Chronic Kidney Disease". In: *Journal of Animal Physiology and Animal Nutrition* 102.S1 (2018), pages 31-36. ISSN: 1439-0396. DOI: 10.1111/jpn.12886 (cf. pages 107, 109).
- [27] Sofie DUPONT et al. "Nutritional Support and Follow-up of a Puppy with Chronic Kidney Disease". In: *Veterinary Record Case Reports* 3.1 (1<sup>er</sup> avr. 2015), e000158. ISSN: 2052-6121. DOI: 10.1136/vetreccr-2014-000158 (cf. page 108).
- [28] B. HANSEN et al. "Clinical and Metabolic Findings in Dogs with Chronic Renal Failure Fed Two Diets." In: Am J Vet Res 53.3 (mar. 1992), pages 326-334. ISSN: 0002-9645. pmid: 1595957. URL: http://europepmc.org/abstract/med/1595957 (visité le 07/04/2019) (cf. page 108).
- [29] Kai LAU. "Phosphate Excess and Progressive Renal Failure: The Precipitation-Calcification Hypothesis". In: *Kidney International* 36.5 (1<sup>er</sup> nov. 1989), pages 918-937. ISSN: 0085-2538. DOI: 10.1038/ki.1989.281 (cf. page 108).
- [30] J. ELLIOTT et P. J. BARBER. "Feline Chronic Renal Failure: Clinical Findings in 80 Cases Diagnosed between 1992 and 1995". In: *Journal of Small Animal Practice* 39.2 (1998), pages 78-85. ISSN: 1748-5827. DOI: 10.1111/j.1748-5827.1998.tb03598.x (cf. page 108).
- [31] E. A. PLANTINGA et al. "Retrospective Study of the Survival of Cats with Acquired Chronic Renal Insufficiency Offered Different Commercial Diets". In: *Veterinary Record* 157.7 (13 août 2005), pages 185-187. ISSN: 0042-4900, 2042-7670. DOI: 10.1136/vr.157.7. 185. pmid: 16100367 (cf. pages 108, 109, 111).
- [32] J. ELLIOTT et al. "Survival of Cats with Naturally Occurring Chronic Renal Failure: Effect of Dietary Management". In: *Journal of Small Animal Practice* 41.6 (2000), pages 235-242. ISSN: 1748-5827. DOI: 10.1111/j.1748-5827.2000.tb03932.x (cf. pages 108, 111).
- [33] Frédéric JACOB et al. "Clinical Evaluation of Dietary Modification for Treatment of Spontaneous Chronic Renal Failure in Dogs". In: *Journal of the American Veterinary Medical Association* 220.8 (1<sup>er</sup> avr. 2002), pages 1163-1170. ISSN: 0003-1488. DOI: 10.2460/javma.2002.220.1163 (cf. pages 108, 111).

- [34] Sheri J. Ross et al. "Clinical Evaluation of Dietary Modification for Treatment of Spontaneous Chronic Kidney Disease in Cats". In: *Journal of the American Veterinary Medical Association* 229.6 (1er sept. 2006), pages 949-957. ISSN: 0003-1488. DOI: 10.2460/javma. 229.6.949 (cf. pages 108, 111).
- [35] E. BIASIBETTI et al. "A Long Term Feed Supplementation Based on Phosphate Binders in Feline Chronic Kidney Disease". In: *Vet Res Commun* 42.2 (1<sup>er</sup> juin 2018), pages 161-167. ISSN: 1573-7446. DOI: 10.1007/s11259-018-9719-z (cf. page 108).
- [36] Ellen KIENZLE, Claudia THIELEN et Claudia PESSINGER. "Investigations on Phosphorus Requirements of Adult Cats". In: *J Nutr* 128.12 (1er déc. 1998), 2598S-2600S. ISSN: 0022-3166. DOI: 10.1093/jn/128.12.2598S (cf. page 108).
- [37] L. F. BÖSWALD et al. "A Comparative Meta-Analysis on the Relationship of Faecal Calcium and Phosphorus Excretion in Mammals". In: *Journal of Animal Physiology and Animal Nutrition* 102.2 (2018), pages 370-379. ISSN: 1439-0396. DOI: 10.1111/jpn.12844 (cf. page 108).
- [38] Sarah MA CANEY. "An Online Survey of Dietary and Phosphate Binder Practices of Owners of Cats with Chronic Kidney Disease". In: *Journal of Feline Medicine and Surgery* 19.10 (1<sup>er</sup> oct. 2017), pages 1040-1047. ISSN: 1098-612X. DOI: 10.1177/1098612X16672999 (cf. page 108).
- [39] Bernard H. SCHMIDT et al. "Tolerability and Efficacy of the Intestinal Phosphate Binder Lantharenol® in Cats". In: *BMC Veterinary Research* 8.1 (6 fév. 2012), page 14. ISSN: 1746-6148. DOI: 10.1186/1746-6148-8-14 (cf. page 108).
- [40] Scott A Brown, Marjorie RICKERTSEN et Suzanne SHELDON. "Effects of an Intestinal Phosphorus Binder on Serum Phosphorus and Parathyroid Hormone Concentration in Cats With Reduced Renal Function". In: *Intern J Appl Res Vet Med* 6.3 (2008), page 6 (cf. pages 108, 109).
- [41] Natalia BERNACHON et al. "Comparative Palatability of Five Supplements Designed for Cats Suffering from Chronic Renal Disease". In: *Irish Veterinary Journal* 67.1 (19 mai 2014), page 10. ISSN: 2046-0481. DOI: 10.1186/2046-0481-67-10 (cf. page 108).
- [42] N. BERNACHON et al. "Effect of a Product Containing the Dietary Phosphate Binders Calcium and Magnesium Carbonate Associated with Other Reno-Protectant Substances (Pronefra®) on Blood Parameters and Mineral Balance in Adult Cats." In: International Journal of Applied Research in Veterinary Medicine 12.1 (2014), pages 8-17. ISSN: 1542-2666. URL: https://www.cabdirect.org/cabdirect/abstract/20143187272 (visité le 03/07/2019) (cf. page 108).
- [43] Britta DOBENECKER et al. "Effect of a High Phosphorus Diet on Indicators of Renal Health in Cats". In: *Journal of Feline Medicine and Surgery* 20.4 (1er avr. 2018), pages 339-343. ISSN: 1098-612X. DOI: 10.1177/1098612X17710589 (cf. page 109).
- [44] Janet ALEXANDER et al. "Effects of the Long-Term Feeding of Diets Enriched with Inorganic Phosphorus on the Adult Feline Kidney and Phosphorus Metabolism". In: *British Journal of Nutrition* 121.3 (fév. 2019), pages 249-269. ISSN: 0007-1145, 1475-2662. DOI: 10.1017/S0007114518002751 (cf. page 109).

[45] Jennifer C. COLTHERD et al. "Not All Forms of Dietary Phosphorus Are Equal: An Evaluation of Postprandial Phosphorus Concentrations in the Plasma of the Cat". In: *Br J Nutr* 121.3 (14 fév. 2019), pages 270-284. ISSN: 0007-1145, 1475-2662. DOI: 10.1017/S0007114518003379 (cf. page 109).

- [46] Aleix CASES et Elisabet COLL. "Dyslipidemia and the Progression of Renal Disease in Chronic Renal Failure Patients". In: *Kidney Int. Suppl.* 99 (déc. 2005), S87-93. ISSN: 0098-6577. DOI: 10.1111/j.1523-1755.2005.09916.x. pmid: 16336584 (cf. page 109).
- [47] Scott A. BROWN et al. "Beneficial Effects of Chronic Administration of Dietary ω-3 Polyunsaturated Fatty Acids in Dogs with Renal Insufficiency". In: *Journal of Laboratory and Clinical Medicine* 131.5 (1<sup>er</sup> mai 1998), pages 447-455. ISSN: 0022-2143. DOI: 10.1016/S0022-2143(98)90146-9 (cf. page 109).
- [48] S. A. Brown et al. "Effects of Dietary Polyunsaturated Fatty Acid Supplementation in Early Renal Insufficiency in Dogs". In: *J. Lab. Clin. Med.* 135.3 (mar. 2000), pages 275-286. ISSN: 0022-2143. DOI: 10.1067/mlc.2000.105178. pmid: 10711867 (cf. page 109).
- [49] M. D. HOWARD et al. "Source of Dietary Fiber Fed to Dogs Affects Nitrogen and Energy Metabolism and Intestinal Microflora Populations". In: *Nutrition Research* 20.10 (1<sup>er</sup> oct. 2000), pages 1473-1484. ISSN: 0271-5317. DOI: 10.1016/S0271-5317(00)80028-7 (cf. page 109).
- [50] L. CHIAVAROLI et al. "Dietary Fiber Effects in Chronic Kidney Disease: A Systematic Review and Meta-Analysis of Controlled Feeding Trials". In: *European Journal of Clinical Nutrition* 69.7 (juil. 2015), pages 761-768. ISSN: 1476-5640. DOI: 10.1038/ejcn.2014. 237 (cf. page 109).
- [51] Wendy WAMBACQ et al. "Fermentable Soluble Fibres Spare Amino Acids in Healthy Dogs Fed a Low-Protein Diet". In: *BMC Veterinary Research* 12 (2016), page 130. ISSN: 1746-6148. DOI: 10.1186/s12917-016-0752-2 (cf. page 109).
- [52] Scott A. Brown. "Oxidative Stress and Chronic Kidney Disease". In: *Veterinary Clinics of North America: Small Animal Practice*. Oxidative Stress: The Role of Mitochondria, Free Radicals, and Antioxidants 38.1 (1er jan. 2008), pages 157-166. ISSN: 0195-5616. DOI: 10.1016/j.cvsm.2007.11.001 (cf. page 109).
- [53] K. DAENEN et al. "Oxidative Stress in Chronic Kidney Disease". In: *Pediatric Nephrology* (2018). ISSN: 0931041X. DOI: 10.1007/s00467-018-4005-4 (cf. page 109).
- [54] Jean A. HALL et al. "Cats with IRIS Stage 1 and 2 Chronic Kidney Disease Maintain Body Weight and Lean Muscle Mass When Fed Food Having Increased Caloric Density, and Enhanced Concentrations of Carnitine and Essential Amino Acids". In: *Veterinary Record* (4 déc. 2018), vetrec-2018-104865. ISSN: 0042-4900, 2042-7670. DOI: 10.1136/vr. 104865. pmid: 30514741 (cf. page 111).



Sébastien Lefebvre

## 8.1 Introduction

Les urolithiases sont une dominante pathologique en médecine vétérinaire. L'alimentation joue un rôle important dans leur prévention et parfois aussi dans leur survenue. En effet, pour qu'il y ait formation de cristaux il est nécessaire que les éléments formant ces cristaux soient présents en concentration suffisante et dans des conditions propices à leur précipitation. Or, ces concentrations et ces conditions peuvent être modifiées par l'alimentation.

Ce chapitre traitera principalement des deux grands types d'urolithe les plus fréquentes chez le chien et le chat : les struvites et les oxalates de calcium. Une prise en charge médicale et/ou chirurgicale peut être nécessaire et son opportunité doit être évaluée, même si non traité dans ce chapitre. La lecture du consensus de l'American College of Veterinary Internal Medicine (ACVIM) sur le traitement et la prévention des urolithes du chien et du chat est encouragée \(^1\).

# 8.2 Pathogenèse

Les calculs urinaires surviennent quand sont en présence dans les urines plus d'éléments pouvant se cristalliser que l'urine peut en dissoudre. On parle alors de sursaturation. C'est un état métastable où toute perturbation peut entraîner une précipitation. Ce seuil de sursaturation dépend du type de calcul impliqué, du pH urinaire et de la présence d'inhibiteur de cristallisation. Cependant, la formation de calculs à partir d'un milieu sursaturé n'est pas automatique. Tout d'abord, il est nécessaire d'avoir la formation d'un noyau de cristallisation (phase de nucléation) puis que les conditions nécessaires à la croissance des cristaux soient présentes.

Concernant la phase de nucléation, plusieurs hypothèses, non exclusives, ont été avancées par Osborne et Kruger<sup>2</sup> :

- La théorie de sursaturation
- La théorie de cristallisation induite par la matrice
- La théorie d'inhibition de la cristallisation

La théorie de la sursaturation propose que la formation du noyau survienne uniquement du fait de la sursaturation du milieu sans autre mécanisme. La théorie de cristallisation induite par la matrice suppose que les matrices biologiques participent à la nucléation. Enfin, la dernière théorie avance que ce serait une baisse de la teneur en inhibiteur de la cristallisation dans les urines qui serait à l'origine de la nucléation. En effet, l'urine contient de nombreuses molécules inhibant la formation de cristaux et augmentant le seuil de saturation. On peut notamment citer le citrate, le pyrophosphate et la protéine de Tamm-Horsfall. Cette dernière est une glycoprotéine sécrétée par la branche ascendante de Henlé, c'est la principale protéine urinaire.

Dans un second temps, pour que les cristaux grandissent, il est nécessaire que cet état de sursaturation perdure et que les cristaux ne soient pas éliminés avec les urines. Il est important de signaler que le noyau de cristallisation peut être d'un type différent que le cristal final et celui-ci peut aussi être mixte. En effet, la présence de cristaux est un élément de perturbation pouvant induire la cristallisation d'autres électrolytes et molécules.

Ainsi, nonobstant le type de cristaux impliqué, il est nécessaire de lutter contre la sursaturation des urines en diminuant la concentration des constituants de calculs. Cela implique à la fois des modifications environnementales et diététiques pour augmenter le volume urinaire ainsi que la fréquence d'émission (augmenter les sorties, favoriser l'utilisation de la litière).

# 8.3 Épidémiologie et facteurs de risques

Pour les chiens comme pour les chats, un grand changement de tendance a eu lieu dans les années 80 concernant la représentativité des différents types de calculs. Alors que les calculs de struvites étaient prédominants en fin des années 70, aujourd'hui, ils sont une prévalence équivalente à ceux d'oxalate. Ces deux types de cristaux représentent, à eux deux, plus de 80% des calculs retrouvés<sup>3-5</sup>. Cependant, chez le chat, la prévalence des calculs dépend aussi de leur localisation. Ainsi les bouchons urétraux sont quasiment uniquement composés de struvites alors que les néphrolithes sont principalement des oxalates de calcium<sup>5</sup>. Concernant les néphrolithes canines, ils n'ont pas une surreprésentation d'un type particulié<sup>6</sup>.

Historiquement, ce changement de prévalence dans la composition des calculs est certainement dû au changement de composition des aliments sec de l'époque. En effet, ceux-ci étaient plutôt riches en magnésium et avaient tendance à alcaliniser les urines. Suite à l'augmentation des cas de calculs de struvites et à la compréhension des mécanismes sous-jacents, les industriels se sont adaptés.

Concernant les populations atteintes, de manière générale, les calculs de struvites touchent le plus souvent les jeunes animaux alors que ceux d'oxalate de calcium sont plutôt retrouvés chez les animaux plus âgé. De plus, ces derniers touchent le plus souvent les mâles chez le chien comme chez le chat<sup>7-12</sup>. Enfin, certaines races semblent prédisposées à développer des calculs urinaires, comme les persans<sup>6,7,13</sup>.

Outre les facteurs de risque démographique, d'autres ont été décrits. On peut notamment noter le climat et la saison. Ce facteur de risque, bien décrit chez l'humain<sup>14</sup>, s'explique par les pertes en eau non compensées dans les régions ou les saisons chaudes, ce qui conduit à une concentration des urines. Ce facteur a aussi été mis en évidence chez nos animaux de compagnie<sup>4,15,16</sup>. D'autres facteurs environnementaux comme la sédentarité, la vie à l'intérieur pour les chats et le faible apport en eau sont rapportés<sup>17</sup>.

L'obésité est aussi un facteur de risque important décrit à la fois chez l'humain<sup>18</sup> et l'animal<sup>19</sup>. De même que la castration, cependant ce facteur peut être confondu avec la sédentarité et l'obésité<sup>17</sup>. Enfin, à la vue des ressemblances entre les facteurs de risque humain et des animaux, on peut penser que le stress<sup>20</sup> puisse aussi être un facteur de risque important de développement de calcul chez nos animaux de compagnie.

#### 8.3.1 Oxalate de calcium

Les calculs d'oxalate de calcium se forment dans un contexte de sursaturation des urines en calcium et en acide oxalique. L'importance des deux éléments semble équivalente dans leur rôle sur la sursaturation<sup>21</sup>. L'acide oxalique peut venir directement de l'alimentation, ou peut être issu du métabolisme. On peut noter que la vitamine C et l'hydroxyproline sont deux précurseurs de l'acide oxalique<sup>22-24</sup>. Les calculs d'oxalate de calcium se forment en milieu acide et ne peuvent être dissous.

Pour les calculs d'oxalate de calcium félins, il est important de prendre ne considération que les urines félines ont naturellement des concentrations en acide oxalique et en calcium qui entraîneraient leur précipitation dans de l'eau<sup>25</sup>. Ainsi une diminution des mécanismes d'inhibition de la précipitation ou une augmentation de la teneur en calcium ou oxalate peut conduire à la formation de cristaux.

Il a été montré qu'une diminution du pH urinaire ainsi qu'une diminution de la teneur en magnésium de l'aliment avait tendance à augmenter le risque de développer les calculs d'oxalate de calcium.

D'autres risques ont été avancés comme la richesse de l'aliment en sodium. En effet, celui-ci inhiberait la réabsorption du calcium au niveau de la hanse de Henlé et conduirait à une hypercalciurie<sup>26</sup>. Cependant, chez l'animal les études sur le lien entre l'apport en sodium et la calciurie donnent des résultats contradictoires<sup>27-29</sup>. Enfin, les études chez le chien et le chat tendent à montrer que la dilution des urines engendrée par l'ajout de sodium est plus bénéfique sur la saturation que la diminution de l'absorption du calcium, tout au moins à court terme<sup>30,31</sup>.

## 8.3.2 Phosphate amoniaco-magnésien (struvite)

L'étiologie des calculs de struvites est assez différente entre les deux espèces. À l'inverse des calculs d'oxalate de calcium, les calculs de struvites peuvent être dissous en acidifiant les urines.

Chez le chien, ces urolithes sont le plus souvent la conséquence d'une infection du tractus urinaire. Les bactéries convertissent l'urée en ammoniaque, qui précipite par la suite avec les ions phosphate et magnésium. Ainsi chez le chien, le traitement sera nécessairement médical avec un accompagnement diététique.

Pour ce qui est du chat, les calculs de struvites stériles sont fréquents. Ceux-ci se forment en pH urinaire basique (supérieur à 7) et en présence suffisante de phosphate, d'ammoniac et de magnésium. Il semble que le magnésium ait une place importante dans le sursaturation<sup>8</sup>. Le risque est corrélé avec la teneur en fibre, amidon, calcium, phosphore et magnésium<sup>9,32</sup>. Des études expérimentales semblent surtout soulever l'importance du magnésium dans l'incidence des calculs de struvite. L'autre élément où l'alimentation joue un rôle est le pH urinaire. En effet, les calculs de struvite se constituent avec un pH urinaire supérieur à 7, les ingrédients peuvent modifier ce pH (traité par la suite), mais aussi le mode d'alimentation. À la suite de la prise alimentaire et en compensation de la sécrétion d'acide gastrique, une alcalinisation des urines est observée et par conséquent favoriser à cette occasion la formation de calculs de struvite. Cette alcalinisation dépend notamment de la taille du repas<sup>33</sup> et peut aboutir à un pH urinaire de 8 dans les heures suivant le repas<sup>8</sup>. Il semblerait que les petits repas répétés seraient moins à risque qu'un seul grand repas<sup>34</sup>.

#### 8.3.3 Phosphate de calcium

Il existe trois types de cristaux regroupés dans la famille des phosphates de calcium, ceux d'hydroxyapatite , de brushite et d'hydroxyapatite carbonatée. Les urolithes de phosphate de calcium représentent entre 1% à 2% de l'ensemble de celles du chien et, parmi celles-ci, ce sont les hydroxyapatites carbonatées qui sont les plus fréquentes. Les urolithes d'hydroxyapatite et de brushite peuvent être retrouvés seuls, ceux de brushite sont aussi parfois associés aux oxalates de calcium. Enfin les cristaux d'hydroxyapatite carbonatée, qui sont produits par des bactérie, sont souvent identifiés en présence de struvite.

Les phosphates de calcium sont peu solubles en pH alcalin et augmentent leur solubilité en pH acide, à l'exception du brushite qui se forme en pH acide<sup>35</sup>. De même, l'augmentation de la concentration en calcium dans les urines diminue la solubilité de ces cristaux<sup>36</sup>. Ainsi, des affections comme l'hyperparathyroïdisme<sup>37</sup> ou des apports importants en protéines peuvent promouvoir les urolithiases à phosphate de calcium.

#### 8.3.4 Purine et ses dérivés

La purine est un métabolite de l'ADN et de l'ARN, elle est normalement transformée en allantoïne pour être éliminée. Cette transformation fait intervenir deux enzymes (l'uricase et la xanthine oxydase) et passe par plusieurs intermédiaires métaboliques comme présentés dans la figure 8.1. Or, ces molécules de transition, l'acide urique et la xanthine, sont bien moins solubles dans les urines que l'allantoïne<sup>38</sup>. Ainsi, en cas de limitation de l'activité d'une de ces deux enzymes, des cristallisations à base de xanthine ou d'acide urique peuvent survenir dans les urines.

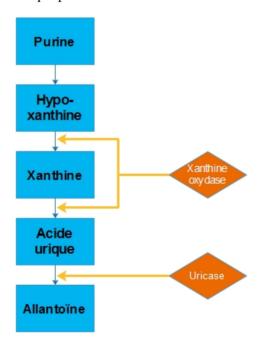



FIGURE 8.1: Métabolisme de la purine et principales enzymes intervenantes.

Bien après les urolithiases d'oxalate de calcium et de struvite, les urolithiases des métabolites de la purine sont les plus fréquentes chez le chien, quelques pour cent de prévalence. Cependant, cette affection touche presque exclusivement certaines races, surtout les dalmatiens, et principalement les mâles. La spécificité des dalmatiens considérant les urolithiases d'urate s'explique par une activité

de leur uricase moindre par rapport aux autres races<sup>39,40</sup>. Cependant, ce n'est pas le seul facteur sous-jacent de la prédisposition de cette race à ces types d'urolithiases. En effet, si l'excretion des urates est élevée chez tous les dalmatiens tous ne présentent pas d'urolithiase<sup>41,42</sup>. La mutation du gène *SLC2A9*, qui est responsable de la diminution de l'absorption de l'acide urique au niveau du foie et des reins, serait un élément déterminant dans la pathogénie de ces cristaux chez le dalmatien<sup>43</sup>. Il est à noter que dans les autres races ces urolithes sont beaucoup plus rares, même si la mutation de *SLC2A9* est y aussi décrite à des prévalences bien inférieures<sup>44</sup>. Enfin, la présence de ces cristaux peut être le signe d'un dysfonctionnement hépatique. Il est a noter que la base de l'acide urique, l'urate, est plus soluble, il peut ainsi être intéressant d'alcaliniser légèrement les urines.

Les urolithiases de xanthine surviennent le plus souvent à la suite d'un traitement à l'allopurinol, bien qu'il existe une rare affection génétique favorisant l'excrétion urinaire de la xanthine décrite l'humain<sup>45</sup>. En effet, un métabolite de l'allopurinol est un inhibiteur de la xanthine oxydase<sup>46,47</sup>. Par conséquent, il est important de s'assurer que les aliments donnés lors de ce traitement apportent peu d'éléments pouvant former des purines.

De cette étude des facteurs de risque, il est important de retenir le nécessaire équilibre qu'il faut trouver afin de prévenir la formation de cristaux urinaires.

# 8.4 Accompagnement nutritionnel

Dans cette partie nous traiterons à la fois de la prévention de la récidive des calculs que de leur dissolution (pour les calculs de struvite). Il est évident qu'une grande partie de la prise en charge passe par une diminution des facteurs de risque. Ainsi, les points amplement abordés plus haut ne le seront pas dans cette partie.

# 8.4.1 Le pH urinaire

Le pH urinaire est la clef pour prévenir la survenue des calculs et pour dissoudre les calculs de struvite. En plus des éléments diététiques avancés plus haut pour prévenir l'alcalinisation postprandiale de l'urine, à savoir, préférer donner plusieurs petits repas qu'un seul grand repas. Il est aussi possible de moduler le pH urinaire en sélectionnant ses ingrédients. Ainsi, les rations riches en protéines animales ont tendance à diminuer le pH notamment du fait de leurs acides aminés soufrés (méthionine et cystéine). À l'inverse une alimentation riche en céréales, du fait de sa teneur en potassium a plutôt tendance à augmenter le pH<sup>48</sup>. La teneur en certains sel de l'aliment permet aussi de modifier le pH urinaire<sup>49</sup>. Des modèles permettant d'estimer le pH obtenu avec un aliment en calculant son excès de base ont été réalisés<sup>50,51</sup>.

Il est important de vérifier que les objectifs de pH urinaire sont atteints environ 4 à 8h après le repas et de contrôler ce paramètre régulièrement, notamment dans un contexte de dissolution de calcul de struvite. Le tableau 8.2 présente les objectifs de pH. Ajout d'agent alcalinisant ou acidifiant peut être envisagé si l'alimentation seule ne suffit pas.

L'action d'acidifier les urines par l'alimentation peut représenter un risque. En effet, cette acidification à lieu du fait que l'animal tente de maintenir sa balance acide-base sanguine en éliminant les agents acides dans les urines. Or, en cas dysfonction rénale ou si la quantité d'acide est trop importante pour être éliminée, cela peut entraîner une acidose métabolique<sup>52</sup>. Cette acidose a par la suite de nombreuses conséquences sur l'équilibre électrolytique et peut conduire à une perte urinaire de calcium et potassium et à une diminution des réserves de taurine<sup>53-56</sup>. Il est, par conséquent, conseillé de bien suivre l'ampleur de l'acidification des urines. De plus cette approche devrait être évitée dans un contexte de maladie rénale.

| Objectif pH cible                                          | Chien   | Chat    |
|------------------------------------------------------------|---------|---------|
| Prévention des calculs de struvite                         | 6.4-6.6 | 6.0-6.5 |
| Dissolution des calculs de struvite                        | 6.0-6.5 | 6.0-6.3 |
| Prévention des calculs d'oxalate de calcium                | >6.5    | 6.3-6.9 |
| Prévention des calculs de purine                           | 7.1-7.5 | -       |
| Prévention et aide à la dissolution des calculs de cystine | 7.1-7.5 | 7.1-7.5 |

TABLE 8.2: pH cibles selon les objectifs de prévention ou de dissolution<sup>1,8</sup>.

#### 8.4.2 Humidité

L'humidité de l'aliment est un point essentiel de la prévention de tout type d'urolithiase. En effet, cette humidité permet d'apporter une quantité d'eau importante et ainsi de diluer les urines. L'humidité de l'aliment devrait au moins être de 75%<sup>1</sup>. Dans une étude chez le chat et la prévention de la récidive des calculs de struvite sur des chats atteints de cystites idiopathiques, les chats recevant une alimentation humide avaient trois fois moins de chance de récidiver dans l'année<sup>57</sup>. De plus, il est aussi important de limiter la quantité d'eau perdue dans les fèces en diminuant l'apport en matière sèche et par conséquent en augmentant la densité énergétique et la digestibilité de l'aliment de l'aliment<sup>8</sup>. En cas d'alimentation sèche, il est conseillé de réhydrater celle-ci afin d'apporter l'eau suffisante<sup>1</sup>. Le consensus ACVIM conseille surtout cette apport en eau pour la prévention des calculs d'oxalate de calcium<sup>1</sup>. Cependant, pour l'auteur, la dilution des urines, et par conséquent l'humidité de l'aliment, est un élément fondamental de la prise en charge de l'ensembles des calculs rénaux.

#### 8.4.3 Sodium

L'ajout de sodium a pour objectif d'augmenter la dilution des urines en augmentant la diurèse induite par l'excrétion du sodium et la limitation de sa réabsorption. Les questionnements sur les risques des apports en sodium sur l'excrétion urinaire du calcium ont été discutés plus haut au point 8.3.1. Bien que cette approche soit efficace à court terme<sup>28,30,58,59</sup>, il semble que cette efficacité s'estompe passé 3 mois<sup>60,61</sup>. Ainsi cette approche ne devrait être envisagée qu'en cas d'impossibilité de fournir une alimentation humide ou humidifiée<sup>1</sup>.

#### 8.4.4 Protéines

Outre leurs effets sur le pH, les protéines ont une conséquence sur la production d'urée et son excrétion dans les urines. Ainsi, chez le chien en cas d'infection du tractus urinaire, il est conseillé de moduler la quantité de protéine alimentaire pour limiter la création d'ammoniac. Cependant, cette création d'urée peut aussi augmenter le volume urinaire<sup>62-65</sup>, et ainsi pourrait avoir un effet bénéfique dans le contexte de calculs. Mais, une étude de 2014 sur des chats tendrait à montrer qu'avec un apport de plus de 92g/Mcal de BEE cet effet est aussi accompagné par une augmentation de la concentration en calcium urinaire et d'une baisse de celle de citrate, un inhibiteur de précipitation<sup>66</sup>. Ce qui conduirait à une augmentation du risque de formation de calcul d'oxalate de calcium<sup>66</sup>. D'autres études seraient nécessaires, mais le consensus actuel de l'ACVIM conseille de ne pas apporter une quantité excessive de protéines dans un but de prévenir les calculs d'oxalate de calcium<sup>1</sup>.

# 8.4.5 Éléments particuliers

Dans le cadre des urolithiases composée de métabolite de la purine ou d'oxalate, il est nécessaire de choisir des aliments contenant peu de ces composés. Le tableau 8.4 présentent les aliments en fonction de leur teneur en purine et le tableau 8.6 en fonction de leur teneur en oxalate

| Aliments riches en purines  | Aliments modérés en purine  | Aliments pauvres en purines |  |  |
|-----------------------------|-----------------------------|-----------------------------|--|--|
| Abats                       | Viandes                     | Graisses et huiles          |  |  |
| Fruits de mer               | Champignons                 | Œufs                        |  |  |
| Poissons gras (saumon, sar- | Pois, haricots et lentilles | Fruits                      |  |  |
| dine, thon)                 |                             |                             |  |  |
| Levures                     | Asperges, choux, épinard    | Autres légumes              |  |  |

TABLE 8.4: Aliments classés selon leur teneur en purine.

| Aliments riches en oxalate | Aliments modérés en oxalate | Aliments pauvres en oxalate |
|----------------------------|-----------------------------|-----------------------------|
| Céleri                     | Sardines                    | Viandes                     |
| Concombre                  | Asperge                     | Oeuf                        |
| Aubergine                  | Carotte                     | Autres poissons             |
| Haricot vert               | Maïs                        | Chou                        |
| Épinard                    | Laitue                      | Riz                         |
| Pomme de terre (avec peau) | Tomate                      | Pâtes                       |
| Patate douce               | Orange                      | Pomme de terre sans peau    |
| Pomme                      | Pèche                       |                             |
| Abricot                    | Ananas                      |                             |
| Citron                     |                             |                             |
| Soja                       |                             |                             |
| Germe de blé               |                             |                             |

TABLE 8.6: Aliments classés selon leur teneur en oxalate.

# 8.5 Aliments commerciaux

Il existe cinq objectifs nutritionnels particuliers pour le chien et le chat concernant des urolithiases :

- Dissolution des calculs de struvite
- Réduction des calculs de struvite
- Réduction des calculs d'oxalate
- Réduction des calculs d'urate
- Réduction des calculs de cystine

On distingue principalement trois types de produit, ceux destinés à la dissolution des calculs de struvite, ceux qui préviennent le risque de récidive des calculs de struvite et d'oxalate et enfin ceux qui préviennent le risque de récidive des calculs de cystine et d'urate (aussi utilisé pour les urolithiases à xanthine). Il est à noter que, chez le chat, ce dernier type de produit n'est pas ou peu représenté sur le marché. De plus, les aliments humides sont très représentés pour ces indications, y compris chez le chien.

L'un des grands éléments différenciant entre les marques est la présence, ou non, d'une forte teneur en sodium. La figure 8.2 permet de voir l'importante disparité entre les marques, permettant au vétérinaire de faire son choix en prenant en compte le bénéfice/risque d'une alimentation riche en sodium.

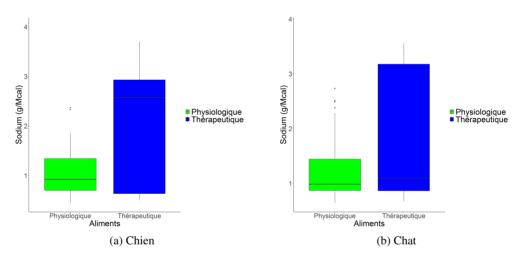



FIGURE 8.2: Apport en sodium des aliments avec un ONP urolithiase à destination du chien et du chat, par rapport aux aliments physiologiques des marques vétérinaires.

## 8.6 Conclusion

Le mot clef de l'accompagnement d'un animal pour limiter ou traiter des urolithiases est l'équilibre entre des apports nutritionnels . Tout excès pour éviter un type de calcul augmente le risque d'en développer un autre. De plus, les approches basées sur le pH urinaire, bien que très efficaces, doivent être contrôlées, afin de s'assurer de l'atteinte des objectifs et de limiter les risques d'excès pouvant entraîner d'autre affections.

Exercices 127

#### 8.7 Exercices

Exercice 8.1 Oslo est un dalmatien mâle entier de 7 mois pesant 21kg (NEC 3/5, poids de la mère 25 kg, actif), son propriétaire le nourrit avec la ration BARF suivante :

- 550 g de carcasse entière de poulet (sans organes, avec peau)
- 100g de foie de genisse cru
- 100g de ris de veau cru
- 100g de courgette/ carotte/ fruit/ haricot vert
- 1 cuillère à café d'huile de saumon
- 1 cuillère à café d'huile de colza

Oslo a présenté, il y a un mois, une infection urinaire, des calculs d'urate ont été mis en évidence dans les urines, cependant le propriétaire a refusé la proposition qui lui avait été faite de passer à une alimentation industrielle pauvre en purines.

Dans la ration actuelle de Oslo quels éléments vous semblent critiques pour sa santé urinaire ? Proposez une ration à Oslo, en prenant en compte les volontés du propriétaire et en proposant des arguments pédagogiques pour justifier les écarts avec la ration d'origine.

Exercice 8.2 Isis est un chat européen mâle stérilisé de 12 ans pesant 5.4 kg (NEC 5/5) vivant à l'intérieur et étant calme. Il est suivi pour récidive de calculs de struvite.

Il est nourri avec 50 g de croquettes Hill's c/d Multicare au poulet.

Il vous est référé pour la prise en charge de son surpoids.

Quelle alimentation conseillez vous à Isis ? Quels sont vos objectifs et points d'attention ? Quels sont vos conseils diététiques ?

Exercice 8.3 Phénix est un chat européen mâle stérilisé de 8 ans et 3.4 kg (NEC 3/5) vivant à l'intérieur dans un environnement enrichi.

Il est nourri avec 50 g de croquettes Purizon Adult Sterilised poulet, poisson - sans céréales.

Il vous est référé par votre collègue. Le week-end dernier Phénix a été reçu en urgence pour un globe vesical, résolu après sondage. L'analyse des urines a mis en évidence la présence de nombreux cristaux de struvite. Dans son dossier vous remarquez qu'une MRC stade IRIS 1 a été diagnostiquée, il y a 2 mois. A l'époque la propriétaire avait refusé de changer d'alimentation. Cependant, à la vue des récents événements elle est prète a suivre vos recommandations.

Quelle alimentation conseillez vous à Phénix? Quels sont vos conseils diététiques?

#### 8.8 Références

- [1] J. P. LULICH et al. "ACVIM Small Animal Consensus Recommendations on the Treatment and Prevention of Uroliths in Dogs and Cats". In: *Journal of Veterinary Internal Medicine* 30.5 (2016), pages 1564-1574. ISSN: 1939-1676. DOI: 10.1111/jvim.14559 (cf. pages 119, 124).
- [2] Carl A. OSBORNE et John M. KRUGER. "Initiation and Growth of Uroliths". In: *Veterinary Clinics of North America: Small Animal Practice* 14.3 (1er mai 1984), pages 439-454. ISSN: 0195-5616. DOI: 10.1016/S0195-5616(84)50052-7 (cf. page 119).

- [3] Doreen M. HOUSTON et al. "Analysis of Canine Urolith Submissions to the Canadian Veterinary Urolith Centre, 1998–2014". In: Can Vet J 58.1 (jan. 2017), pages 45-50. ISSN: 0008-5286. pmid: 28042154. URL: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5157737/ (visité le 20/05/2019) (cf. page 120).
- [4] Doreen M. HOUSTON et al. "Evaluation of 21 426 Feline Bladder Urolith Submissions to the Canadian Veterinary Urolith Centre (1998–2014)". In: Can Vet J 57.2 (fév. 2016), pages 196-201. ISSN: 0008-5286. pmid: 26834273. URL: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4713001/ (visité le 20/05/2019) (cf. page 120).
- [5] Carl A. OSBORNE et al. "Analysis of 451,891 Canine Uroliths, Feline Uroliths, and Feline Urethral Plugs from 1981 to 2007: Perspectives from the Minnesota Urolith Center". In: *Veterinary Clinics of North America: Small Animal Practice*. Changing Paradigms in Diagnosis and Treatment of Urolithiasis 39.1 (1er jan. 2009), pages 183-197. ISSN: 0195-5616. DOI: 10.1016/j.cvsm.2008.09.011 (cf. page 120).
- [6] Gerald V. LING et al. "Renal Calculi in Dogs and Cats: Prevalence, Mineral Type, Breed, Age, and Gender Interrelationships (1981–1993)". In: *Journal of Veterinary Internal Medicine* 12.1 (1998), pages 11-21. ISSN: 1939-1676. DOI: 10.1111/j.1939-1676.1998.tb00491.x (cf. page 120).
- [7] Allison B. CANNON et al. "Evaluation of Trends in Urolith Composition in Cats: 5,230 Cases (1985–2004)". In: *Journal of the American Veterinary Medical Association* 231.4 (1<sup>er</sup> août 2007), pages 570-576. ISSN: 0003-1488. DOI: 10.2460/javma.231.4.570 (cf. page 120).
- [8] Linda P. CASE et al. "Chapter 30 Dietary Management of Urolithiasis in Cats and Dogs". In: Canine and Feline Nutrition (THIRD EDITION). Saint Louis: Mosby, 2011, pages 359-380. ISBN: 978-0-323-06619-8. URL: http://www.sciencedirect.com/science/article/pii/B9780323066198100301 (visité le 06/12/2016) (cf. pages 120, 121, 124).
- [9] Chalermpol LEKCHAROENSUK et al. "Association between Dietary Factors and Calcium Oxalate and Magnesium Ammonium Phosphate Urolithiasis in Cats". In: *Journal of the American Veterinary Medical Association* 219.9 (1er nov. 2001), pages 1228-1237. ISSN: 0003-1488. DOI: 10.2460/javma.2001.219.1228 (cf. pages 120, 121).
- [10] C. LEKCHAROENSUK et al. "Association between Patient-Related Factors and Risk of Calcium Oxalate and Magnesium Ammonium Phosphate Urolithiasis in Cats". In: *J. Am. Vet. Med. Assoc.* 217.4 (15 août 2000), pages 520-525. ISSN: 0003-1488. pmid: 10953716 (cf. page 120).
- [11] Rebecca L. SEAMAN et Joseph William BARTGES. "KEY FACTS Canine Struvite Urolithiasis". In: 2005 (cf. page 120).
- [12] G. V. LING et al. "Urolithiasis in Dogs. I: Mineral Prevalence and Interrelations of Mineral Composition, Age, and Sex." In: Am J Vet Res 59.5 (mai 1998), pages 624-629. ISSN: 0002-9645. pmid: 9582968. URL: http://europepmc.org/abstract/med/9582968 (visité le 21/05/2019) (cf. page 120).
- [13] G. V. LING et al. "Urolithiasis in Dogs. II: Breed Prevalence, and Interrelations of Breed, Sex, Age, and Mineral Composition." In: Am J Vet Res 59.5 (mai 1998), pages 630-642. ISSN: 0002-9645. pmid: 9582969. URL: http://europepmc.org/abstract/med/9582969 (visité le 21/05/2019) (cf. page 120).

[14] Michelle LÓPEZ et Bernd HOPPE. "History, Epidemiology and Regional Diversities of Urolithiasis". In: *Pediatr Nephrol* 25.1 (27 août 2008), page 49. ISSN: 1432-198X. DOI: 10.1007/s00467-008-0960-5 (cf. page 120).

- [15] Joseph W BARTGES. "Feline Calcium Oxalate Urolithiasis: Risk Factors and Rational Treatment Approaches". In: *Journal of Feline Medicine and Surgery* 18.9 (1<sup>er</sup> sept. 2016), pages 712-722. ISSN: 1098-612X. DOI: 10.1177/1098612X16660442 (cf. page 120).
- [16] Julia P. SUMNER et Mark RISHNIW. "Urethral Obstruction in Male Cats in Some Northern United States Shows Regional Seasonality". In: *The Veterinary Journal* 220 (1<sup>er</sup> fév. 2017), pages 72-74. ISSN: 1090-0233. DOI: 10.1016/j.tvjl.2016.12.019 (cf. page 120).
- [17] Veridiane da Rosa GOMES et al. "Risk Factors Associated with Feline Urolithiasis". In: *Vet Res Commun* 42.1 (1er mar. 2018), pages 87-94. ISSN: 1573-7446. DOI: 10.1007/s11259-018-9710-8 (cf. pages 120, 121).
- [18] Charles D. SCALES et al. "Prevalence of Kidney Stones in the United States". In: *European Urology* 62.1 (1<sup>er</sup> juil. 2012), pages 160-165. ISSN: 0302-2838. DOI: 10.1016/j.eururo. 2012.03.052 (cf. page 121).
- [19] Stephanie M. KENNEDY et al. "Comparison of Body Condition Score and Urinalysis Variables between Dogs with and without Calcium Oxalate Uroliths". In: *Journal of the American Veterinary Medical Association* 249.11 (22 nov. 2016), pages 1274-1280. ISSN: 0003-1488. DOI: 10.2460/javma.249.11.1274 (cf. page 121).
- [20] G. R. NAJEM et al. "Stressful Life Events and Risk of Symptomatic Kidney Stones." In: *Int J Epidemiol* 26.5 (1<sup>er</sup> oct. 1997), pages 1017-1023. ISSN: 0300-5771. DOI: 10.1093/ije/26.5.1017 (cf. page 121).
- [21] Charles Y. C. PAK et al. "Relative Effect of Urinary Calcium and Oxalate on Saturation of Calcium Oxalate Rapid Communication". In: *Kidney International* 66.5 (1<sup>er</sup> nov. 2004), pages 2032-2037. ISSN: 0085-2538. DOI: 10.1111/j.1523-1755.2004.00975.x (cf. page 121).
- [22] J. C. DIJCKER et al. "The Effect of Dietary Hydroxyproline and Dietary Oxalate on Urinary Oxalate Excretion in Cats". In: *J Anim Sci* 92.2 (1<sup>er</sup> fév. 2014), pages 577-584. ISSN: 0021-8812. DOI: 10.2527/jas.2013-6178 (cf. page 121).
- [23] John KNIGHT et al. "Ascorbic Acid Intake and Oxalate Synthesis". In: *Urolithiasis* 44.4 (1<sup>er</sup> août 2016), pages 289-297. ISSN: 2194-7236. DOI: 10.1007/s00240-016-0868-7 (cf. page 121).
- [24] Tatsuya TAKAYAMA et al. "Control of Oxalate Formation from L-Hydroxyproline in Liver Mitochondria". In: *JASN* 14.4 (1<sup>er</sup> avr. 2003), pages 939-946. ISSN: 1046-6673, 1533-3450. DOI: 10.1097/01.ASN.0000059310.67812.4F. pmid: 12660328 (cf. page 121).
- [25] C. A. OSBORNE et al. "Medical Dissolution of Feline Struvite Urocystoliths." In: *J Am Vet Med Assoc* 196.7 (avr. 1990), pages 1053-1063. ISSN: 0003-1488. pmid: 2329073. URL: http://europepmc.org/abstract/med/2329073 (visité le 21/05/2019) (cf. page 121).
- [26] SAKHAEE KHASHAYAR et al. "The Potential Role of Salt Abuse on the Risk for Kidney Stone Formation". In: *Journal of Urology* 150 (2 Part 1 1<sup>er</sup> août 1993), pages 310-312. DOI: 10.1016/S0022-5347(17)35468-X (cf. page 121).

- [27] Claudia A. KIRK, Dennis E. JEWELL et Stephen R. LOWRY. "Effects of Sodium Chloride on Selected Parameters in Cats". In: *Vet. Ther.* 7.4 (2006), pages 333-346. ISSN: 1528-3593. pmid: 17216589 (cf. page 121).
- [28] N. PASSLACK et al. "Short Term Effects of Increasing Dietary Salt Concentrations on Urine Composition in Healthy Cats". In: *The Veterinary Journal* 201.3 (1er sept. 2014), pages 401-405. ISSN: 1090-0233. DOI: 10.1016/j.tvjl.2014.04.015 (cf. pages 121, 124).
- [29] P. NGUYEN et al. "Sodium in Feline Nutrition". In: *J Anim Physiol Anim Nutr* 101.3 (1<sup>er</sup> juin 2017), pages 403-420. ISSN: 1439-0396. DOI: 10.1111/jpn.12548 (cf. page 121).
- [30] Amanda J. HAWTHORNE et Peter J. MARKWELL. "Dietary Sodium Promotes Increased Water Intake and Urine Volume in Cats". In: *J Nutr* 134.8 (1<sup>er</sup> août 2004), 2128S-2129S. ISSN: 0022-3166. DOI: 10.1093/jn/134.8.2128S (cf. pages 121, 124).
- [31] A. E STEVENSON, W. K HYNDS et P. J MARKWELL. "Effect of Dietary Moisture and Sodium Content on Urine Composition and Calcium Oxalate Relative Supersaturation in Healthy Miniature Schnauzers and Labrador Retrievers". In: *Research in Veterinary Science* 74.2 (1<sup>er</sup> avr. 2003), pages 145-151. ISSN: 0034-5288. DOI: 10.1016/S0034-5288 (02)00184-4 (cf. page 121).
- [32] Masayuki Funaba et al. "Evaluation of Effects of Dietary Carbohydrate on Formation of Struvite Crystals in Urine and Macromineral Balance in Clinically Normal Cats". In: *American Journal of Veterinary Research* 65.2 (1<sup>er</sup> fév. 2004), pages 138-142. ISSN: 0002-9645. DOI: 10.2460/ajvr.2004.65.138 (cf. page 121).
- [33] A. Allen TIMOTHY. "Measurement of the Influence of Diet on Feline Urinary Ph". In: *Veterinary Clinics: Small Animal Practice* 26.2 (1<sup>er</sup> mar. 1996), pages 363-368. ISSN: 0195-5616, 1878-1306. DOI: 10.1016/S0195-5616(96)50216-0. pmid: 8711871 (cf. page 121).
- [34] G. F. TATON, D. W. HAMAR et L. D. LEWIS. "Urinary Acidification in the Prevention and Treatment of Feline Struvite Urolithiasis". In: *J. Am. Vet. Med. Assoc.* 184.4 (15 fév. 1984), pages 437-443. ISSN: 0003-1488. pmid: 6698875 (cf. page 121).
- [35] J. S. ELLIOT. "Calcium Phosphate Solubility in Urine". In: *J. Urol.* 77.2 (fév. 1957), pages 269-274. ISSN: 0022-5347. DOI: 10.1016/s0022-5347(17)66552-2. pmid: 13406876 (cf. page 122).
- [36] Sangtae PARK et Margaret S. PEARLE. "Pathophysiology and Management of Calcium Stones". In: *Urologic Clinics of North America*. Urolithiasis 34.3 (1<sup>er</sup> août 2007), pages 323-334. ISSN: 0094-0143. DOI: 10.1016/j.ucl.2007.04.009 (cf. page 122).
- [37] Edward C. FELDMAN. "Hypercalcemia and Primary Hyperparathyroidism". In: *Cnaine and feline endocrinology and reproduction* (2004), pages 660-715. URL: https://ci.nii.ac.jp/naid/20001575461/ (visité le 09/01/2020) (cf. page 122).
- [38] Joseph W. BARTGES et al. "Canine Urate Urolithiasis: Etiopathogenesis, Diagnosis, and Management". In: *Veterinary Clinics: Small Animal Practice* 29.1 (1er jan. 1999), pages 161-191. ISSN: 0195-5616, 1878-1306. DOI: 10.1016/S0195-5616(99)50010-7. pmid: 10028157 (cf. page 122).
- [39] N. SAFRA et al. "Exclusion of Urate Oxidase as a Candidate Gene for Hyperuricosuria in the Dalmatian Dog Using an Interbreed Backcross". In: *J Hered* 96.7 (1<sup>er</sup> nov. 2005), pages 750-754. ISSN: 0022-1503. DOI: 10.1093/jhered/esi078 (cf. page 123).

[40] R. H. SCHAIBLE. "Genetic Predisposition to Purine Uroliths in Dalmatian Dogs". In: *Vet. Clin. North Am. Small Anim. Pract.* 16.1 (jan. 1986), pages 127-131. ISSN: 0195-5616. DOI: 10.1016/s0195-5616(86)50007-3. pmid: 3486508 (cf. page 123).

- [41] L. C. CASE et al. "Urolithiasis in Dalmations : 275 Cases (1981-1990)". In : *J. Am. Vet. Med. Assoc.* 203.1 (1<sup>er</sup> juil. 1993), pages 96-100. ISSN : 0003-1488. pmid : 8407468 (cf. page 123).
- [42] Hasan Albasan et al. "Evaluation of the Association between Sex and Risk of Forming Urate Uroliths in Dalmatians". In: *J. Am. Vet. Med. Assoc.* 227.4 (15 août 2005), pages 565-569. ISSN: 0003-1488. DOI: 10.2460/javma.2005.227.565. pmid: 16117063 (cf. page 123).
- [43] Danika BANNASCH et al. "Mutations in the SLC2A9 Gene Cause Hyperuricosuria and Hyperuricemia in the Dog". In: *PLoS Genet* 4.11 (7 nov. 2008). ISSN: 1553-7390. DOI: 10.1371/journal.pgen.1000246.pmid: 18989453 (cf. page 123).
- [44] Jonas DONNER et al. "Genetic Panel Screening of Nearly 100 Mutations Reveals New Insights into the Breed Distribution of Risk Variants for Canine Hereditary Disorders". In: *PLOS ONE* 11.8 (15 août 2016), e0161005. ISSN: 1932-6203. DOI: 10.1371/journal.pone.0161005 (cf. page 123).
- [45] Kimiyoshi ICHIDA et al. "Mutations Associated with Functional Disorder of Xanthine Oxidoreductase and Hereditary Xanthinuria in Humans". In: *International Journal of Molecular Sciences* 13.11 (nov. 2012), pages 15475-15495. DOI: 10.3390/ijms131115475 (cf. page 123).
- [46] Gertrude B. ELION et al. "Metabolic Studies of Allopurinol, an Inhibitor of Xanthine Oxidase". In: *Biochemical Pharmacology* 15.7 (1<sup>er</sup> juil. 1966), pages 863-880. ISSN: 0006-2952. DOI: 10.1016/0006-2952(66)90163-8 (cf. page 123).
- [47] M. TORRES et al. "Adverse Urinary Effects of Allopurinol in Dogs with Leishmaniasis". In: *Journal of Small Animal Practice* 57.6 (2016), pages 299-304. ISSN: 1748-5827. DOI: 10.1111/jsap.12484 (cf. page 123).
- [48] E. R. SKOCH et al. "Influence of Diet on Urine pH and the Feline Urological Syndrome". In: *Journal of Small Animal Practice* 32.8 (1991), pages 413-419. ISSN: 1748-5827. DOI: 10.1111/j.1748-5827.1991.tb00968.x (cf. page 123).
- [49] Ellen KIENZLE, Annette SCHUKNECHT et Helmut MEYER. "Influence of Food Composition on the Urine pH in Cats". In: *J Nutr* 121 (suppl\_11 1er nov. 1991), S87-S88. ISSN: 0022-3166. DOI: 10.1093/jn/121.suppl\_11.S87 (cf. page 123).
- [50] J. T. JEREMIAS et al. "Predictive Formulas for Food Base Excess and Urine pH Estimations of Cats". In: *Animal Feed Science and Technology* 182.1 (12 juin 2013), pages 82-92. ISSN: 0377-8401. DOI: 10.1016/j.anifeedsci.2013.04.003 (cf. page 123).
- [51] E. WAGNER, Ch KEUSCH et Ch IBEN. "Influence of the Feed Base Excess on Urine Parameters in Cats". In: *J Anim Physiol Anim Nutr (Berl)* 90.1-2 (fév. 2006), pages 19-24. ISSN: 0931-2439. DOI: 10.1111/j.1439-0396.2005.00613.x. pmid: 16422765 (cf. page 123).
- [52] Shelley V. CHING et al. "The Effect of Chronic Dietary Acidification Using Ammonium Chloride on Acid-Base and Mineral Metabolism in the Adult Cat". In: *J Nutr* 119.6 (1<sup>er</sup> juin 1989), pages 902-915. ISSN: 0022-3166. DOI: 10.1093/jn/119.6.902 (cf. page 123).

- [53] S. P. DIBARTOLA et al. "Development of Chronic Renal Disease in Cats Fed a Commercial Diet". In: *J. Am. Vet. Med. Assoc.* 202.5 (1er mar. 1993), pages 744-751. ISSN: 0003-1488. pmid: 8454506 (cf. page 123).
- [54] Steven W. Dow et al. "Effects of Dietary Acidification and Potassium Depletion on Acid-Base Balance, Mineral Metabolism and Renal Function in Adult Cats". In: *J Nutr* 120.6 (1<sup>er</sup> juin 1990), pages 569-578. ISSN: 0022-3166. DOI: 10.1093/jn/120.6.569 (cf. page 123).
- [55] S. W. Dow et al. "Potassium Depletion in Cats: Renal and Dietary Influences." In: *J Am Vet Med Assoc* 191.12 (déc. 1987), pages 1569-1575. ISSN: 0003-1488. pmid: 3693010. URL: http://europepmc.org/abstract/med/3693010 (visité le 21/05/2019) (cf. page 123).
- [56] S. W. Dow et al. "Taurine Depletion and Cardiovascular Disease in Adult Cats Fed a Potassium-Depleted Acidified Diet." In: *Am J Vet Res* 53.3 (mar. 1992), pages 402-405. ISSN: 0002-9645. pmid: 1534475. URL: http://europepmc.org/abstract/med/1534475 (visité le 21/05/2019) (cf. page 123).
- [57] P. J. MARKWELL et al. "Clinical Evaluation of Commercially Available Urinary Acidification Diets in the Management of Idiopathic Cystitis in Cats". In: *J. Am. Vet. Med. Assoc.* 214.3 (1<sup>er</sup> fév. 1999), pages 361-365. ISSN: 0003-1488. pmid: 10023397 (cf. page 124).
- [58] Jody P. LULICH, Carl A. OSBORNE et Sherry L. SANDERSON. "Effects of Dietary Supplementation with Sodium Chloride on Urinary Relative Supersaturation with Calcium Oxalate in Healthy Dogs". In: *American Journal of Veterinary Research* 66.2 (1er fév. 2005), pages 319-324. ISSN: 0002-9645. DOI: 10.2460/ajvr.2005.66.319 (cf. page 124).
- [59] C. PINEDA et al. "Effects of Two Calculolytic Diets on Parameters of Feline Mineral Metabolism". In: *Journal of Small Animal Practice* 56.8 (2015), pages 499-504. ISSN: 1748-5827. DOI: 10.1111/jsap.12368 (cf. page 124).
- [60] B.S. REYNOLDS et al. "Effects of Dietary Salt Intake on Renal Function: A 2-Year Study in Healthy Aged Cats". In: *Journal of Veterinary Internal Medicine* 27.3 (mai 2013), pages 507-515. ISSN: 08916640. DOI: 10.1111/jvim.12074 (cf. page 124).
- [61] Hui XU, Dorothy P.L. LAFLAMME et Grace L. LONG. "Effects of Dietary Sodium Chloride on Health Parameters in Mature Cats". In: *Journal of Feline Medicine and Surgery* 11.6 (1<sup>er</sup> juin 2009), pages 435-441. ISSN: 1098-612X. DOI: 10.1016/j.jfms.2008.10.001 (cf. page 124).
- [62] M. FUNABA et al. "Effects of a High-Protein Diet on Mineral Metabolism and Struvite Activity Product in Clinically Normal Cats." In: Am J Vet Res 57.12 (déc. 1996), pages 1726-1732. ISSN: 0002-9645. pmid: 8950426. URL: http://europepmc.org/abstract/med/8950426 (visité le 21/05/2019) (cf. page 124).
- [63] Masashi HASHIMOTO et al. "Effect of Chronic High Protein Intake on Magnesium, Calcium, and Phosphorus Balance in Growing Cats". In: *Experimental Animals* 45.1 (1996), pages 63-70. ISSN: 1341-1357, 1881-7122, 0007-5124. DOI: 10.1538/expanim.45.63 (cf. page 124).
- [64] Masashi HASHIMOTO et al. "Dietary Protein Levels Affect Water Intake and Urinary Excretion of Magnesium and Phosphorus in Laboratory Cats". In: *Experimental Animals* 44.1 (1995), pages 29-35. ISSN: 1341-1357, 1881-7122, 0007-5124. DOI: 10.1538/expanim. 44.29 (cf. page 124).

[65] Fernanda S. MENDONÇA et al. "Hydroxyproline and Starch Consumption and Urinary Supersaturation with Calcium Oxalate in Cats". In: *Animal Feed Science and Technology* 246 (1er déc. 2018), pages 72-81. ISSN: 0377-8401. DOI: 10.1016/j.anifeedsci.2018. 10.001 (cf. page 124).

[66] Nadine PASSLACK et al. "Relevance of dietary protein concentration and quality as risk factors for the formation of calcium oxalate stones in cats". In: *Journal of Nutritional Science* 3 (2014/ed). ISSN: 2048-6790. DOI: 10.1017/jns.2014.13 (cf. page 124).



Sébastien Lefebvre

## 9.1 Introduction

Le cœur et l'ensemble du système cardiovasculaire sont les éléments centraux de la vie mammifère. En définissant de nombreuses constantes vitales, tels le débit sanguin ou les pressions diastolique et systolique, le système cardiovasculaire est la base de la physiologie et de l'homéostasie du vivant. Cependant, ce système, et notamment le myocarde, est exigeant d'un point de vue métabolique et mécanique. Ainsi, à la suite d'un défaut mécanique, de pression systémique ou métabolique, la fonction cardiaque peut en être modifiée. Dans un premier temps, ces défauts sont compensés par l'activité cardiaque, mais cette compensation affecte elle-même le fonctionnement cardiaque, dans un cercle vicieux. A terme, quand le myocarde ne peut plus compenser, c'est l'insuffisance cardiaque.

Les affections cardiaques sont une dominante pathologique du chien comme du chat. L'alimentation est, et hélas reste, un facteur pouvant induire une partie de ces affections, notamment les cardiomyopathies dilatées. Ainsi, avant même de discuter de l'accompagnement nutritionnel des affections cardiovasculaires, il est important de rappeler que la non-couverture des besoins nutritionnels des animaux de compagnie peut entraîner des affections cardiaques.

Les affections cardiovasculaires touchant principalement des animaux âgés, le vétérinaire doit intégrer dans ses recommandations les interactions avec d'autres maladies et, parfois, arbitrer entre l'accompagnement de deux affection dont les soutiens nutritionnels respectifs sont antinomiques. De plus, l'accompagnement nutritionnel des animaux atteints d'affection cardiovasculaire met en évidence la nécessité de la **mesure** et de la **temporalité** dans cette prise en charge. Si ces deux notions sont, pour l'auteur, des piliers de la nutrition clinique, dans le cas des affection cardiaques elles peuvent être la frontière entre la réussite et l'échec.

L'approche et la définition des affections cardiaques sont complexes et nécessitent une prise en

charge spécialisée. Dans ce chapitre, nous nous limiterons aux grands types d'affection cardiaque et à l'accompagnement nutritionnel des animaux atteints.

# 9.2 Éléments généraux et épidémiologie

La prévalence des affections cardiaque chez le chien est stable et est connue depuis le milieu des années 60<sup>1</sup>. Environ 10% des chiens sont atteints par une maladie cardiovasculaire. Dans la grande majorité des cas, ce sont des affections acquises<sup>1,2</sup>. Les deux grands types de maladies cardiaques du chien sont les maladies valvulaires dégénératives (la plus courante étant la mitrale)(MVD) et les cardiomyopathies dilatées (CMD).

La MVD représente environ 80% des affections cardiaques du chien contre 5 à 10 % pour la CMD<sup>3</sup>. La MVD touche principalement les chiens de petite taille à taille moyenne avec une forte prédisposition raciale dans certaines races comme le Cocker, le Teckel, le Beagle, le Chihuahua et le Cavalier King Charles<sup>2,4-7</sup>. La prévalence de l'affection avance avec l'àge. Ainsi, Borgarelli et Buchanan estiment dans une synthèse de la littérature de 2012 que la prévalence des MVD dans les populations de chiens de petite races tendrait vers 100%<sup>8</sup>.

La CMD est plutôt une affection des grands chiens, avec aussi une prédisposition génétique dans certaines races comme le Boxer ou le Doberman<sup>9,10</sup>. Dans ces races, la prévalence de CMD peut atteindre, sur l'ensemble de la durée de vie, 50% pour le Doberman et 30% pour le Boxer<sup>9-11</sup>. Il est à noter que dans certaines races de chien comme le cocker, terre neuve ou le labrador, la cardiomyopathie dilatée peut être consécutive à une carence en taurine<sup>12-14</sup>. Malgré le statut d'acide aminé conditionnel de la taurine chez le chien, il semble qu'elle soit essentielle pour certaines races. Les CMD induites par la taurine et prises en charge à temps par une complémentation en taurine sont réversibles. Cependant, ce n'est pas le cas des autres CMD où la durée de vie médiane après le diagnostique de l'insuffisance cardiaque est d'un à deux mois selon l'étude<sup>15,16</sup>. Enfin, ces dernières années, une corrélation a été observée entre les rations sans céréales et des cas de CMD répondant à des administrations de taurine. Ces éléments sont discutés dans le chapitre 3 sur les rations non conventionnelles.

La CMD était aussi une dominante pathologique du chat jusqu'en 1986, où elle représentait 28% des insuffisances cardiaques<sup>17</sup>. Mais en 1987, Pion et son équipe ont découvert le lien entre la CMD du chat et la taurine<sup>18</sup>. En 1989, après la correction des aliments industriels, la prévalence de la CMD parmi les insuffisances cardiaque du chat n'était plus que de 6%<sup>17</sup>. A la connaissance de l'auteur, il n'a pas été mis en évidence de lien entre la CMD et les aliments sans céréales chez le chat<sup>19</sup>.

Les affections cardiaques du chat sont beaucoup plus fréquentes. La principale affection est la cardiomyopathie hypertrophique (CMH). Selon les études la prévalence de l'affection serait entre 10 et 26%<sup>20,21</sup>. Contrairement au chien, où la principale conséquence des affections cardiaques est le développement d'une insuffisance cardiaque, chez le chat, il faut aussi noter la grande importance des thromboembolie artérielles qui sont l'une des principales causes de la mort à la suite d'une CMH<sup>22</sup>. La médiane de survie suite au diagnostic d'une CMH est de 2 ans, 3 ans en absence de clinique, mais uniquement 6 mois à la suite d'une thromboembolie artérielle (en cas de survie plus de 24h)<sup>22</sup>. L'origine de ces CMH n'est pas encore connue aujourd'hui, hormis pour le Maine Coon et le Ragdoll, où une mutation de la Myosine C proche de celle conduisant à des CMH chez l'humain a été identifiée<sup>23,24</sup>.

Les dérèglements du système cardiovasculaire ont aussi de nombreuses conséquences sur le fonctionnement rénal, qui a son tour a une action sur le système cardiovasculaire. Ainsi, un récent consensus propose d'aborder la maladie cardiovasculaire-rénale comme entité pathologique avec un

consensus sur sa prise en charge<sup>25</sup>.

## 9.2.1 Obésité

L'obésité est une affection qui, à la fois, peut masquer et aggraver une maladie cardiaque. En effet, l'obésité, entre autres, augmente le volume sanguin, la tension et diminue la tolérance à l'effort. Actuellement, peu d'études existent chez le chien sur l'impact de l'obésité sur les affections cardiaques, mais c'est un phénomène bien décrit chez l'homme<sup>26,27</sup>. Quand cela est possible, l'obésité devrait être traitée, notamment pour améliorer les futurs problèmes respiratoires. Mais un plan de perte de poids, dans le cadre d'une affection cardiaque, doit prendre en compte le risque de cachexie cardiaque. Ainsi, un plan de perte de poids ne peut être effectué que lors d'une cardiopathie compensée. Il est à noter que, contrairement à la cachexie, l'obésité ne diminue pas l'espérance de vie des animaux atteints d'insuffisance cardiaque<sup>28-30</sup>.

# 9.2.2 Cachexie cardiaque

La cachexie est une perte de masse musculaire et pondérale. De nombreuses définitions existent, ici nous reprendrons celle de Freeman et sont équipe<sup>28,29</sup>, qui considèrent que la cachexie est présente dès que le score de condition musculaire tel que définit par la WSAVA est inférieur à la normale.

La cachexie cardiaque est semblable à la cachexie cancéreuse en cela qu'elle est multifactorielle et qu'une forte proportion des animaux atteints de la maladie primaire la développe. Ainsi, plus de 40% des chats et près de 50% des chiens avec une insuffisance cardiaque ont une cachexie<sup>28,29</sup>. Or, la cachexie est un élément fondamental de la survie des animaux et est la principale raison d'euthanasie des animaux atteints d'insuffisance cardiaque<sup>28,29,31</sup>.

Les raisons de cette cachexie sont multiples, lors d'une insuffisance cardiaque la fatigue de l'animal, la polypnée ainsi que les nausées peuvent avoir un effet anorexigène<sup>32,33</sup>. De même que l'azotémie, qui est un effet secondaire de certain traitement comme les inhibiteurs de l'enzyme de conversion<sup>34</sup>. L'azotémie peut aussi être augmentée par la concomitance d'une affection rénale. Ainsi, les propriétaires rapportent que 34% des chiens avec une cardiopathie et 38% des chats ont des problèmes d'appétence<sup>32,33</sup>. Certaines études rapportent que les épisodes d'anorexie pourraient toucher 50% des chiens<sup>11</sup>. En plus de l'anorexie et de l'hyporexie, la tachypnée serait à l'origine d'une augmentation du besoin énergétique (décrit chez l'humain)<sup>35</sup>. De plus, lors d'insuffisance cardiaque, une augmentation des cytokines circulantes, comme le TNF et l'interleukine-1, est observée<sup>36</sup>. Or, ces cytokines induisent le catabolisme des protéine et ont un effet anorexigène aggravant la cachexie<sup>37</sup>.

# 9.3 Éléments clefs de l'accompagnement nutritionnel.

Comme présenté plus haut l'un des éléments diminuant le plus l'espérance de vie des animaux atteints d'une affection cardiaque est la cachexie cardiaque. Ainsi, il est fondamental de maintenir un apport alimentaire suffisant pour limiter la cachexie cardiaque.

#### 9.3.1 Protéines

Les protéines ne sont pas l'élément clef pour cette affection. Elles doivent être apportées en quantité et qualité suffisante pour limiter la cachexie et le catabolisme protéique. De plu, ce catabolisme peut conduire à une augmentation de l'azotémie. En dehors des cas avancés de maladie rénale chronique concomitante entraînant une importante élévation de l'azotémie, l'apport en protéine ne devrait pas être restreint dans le cadre d'affection cardiaque<sup>11</sup>.

# 9.3.2 Matières grasses

Les matières grasses sont un élément important de la prise en charge nutritionnelle. Tout d'abord par leur haute densité énergétique, elles permettent de couvrir le besoin énergétique chez les animaux en hyporexie. De plus, environ soixante pour cent de l'énergie du muscle cardiaque provient des acides gras à chaîne longue.

Concernant la qualité des acides gras, il semble que les acides gras les plus intéressants soient les oméga 3 à chaine longue EPA et DHA, notamment en cas de cachexie cardiaque et d'arythmie. En cas de cachexie, l'EPA et le DHA, par leur action sur la synthèse des eicosanoïdes et sur l'inflammation, permettent de diminuer les effets de l'interleukine-1 et du TNF<sup>38</sup>. De plus, ils ont aussi une action orexigène et ils limitent le catabolismes des protéines<sup>39</sup>. Enfin, alors que des dyslipidémies peuvent survenir en cas d'insuffisance cardiaque les oméga 3 permettent de les limiter<sup>40</sup>. Ces effets bénéfiques ont notamment été observés dans une étude de Freeman<sup>41</sup>. Enfin, l'EPA et le DHA ont démontré des effets bénéfiques sur l'arythmie notamment chez le Boxer<sup>42,43</sup>

Les doses d'EPA et de DHA proposées par l'auteur sont de respectivement 0.6g/Mcal et 0.4g/Mcal de BEE.

Un récent brevet de 2017, propose d'utiliser des acides gras à chaînes moyennes (C6, C8 et C10) dans le cadre des affections cardiaques du chien et du chat<sup>44</sup>. En effet, ces acides gras ne nécessitent pas de l-carnitine pour entrer dans la mitochondrie.

#### 9.3.3 **Sodium**

En parallèle de la perte de la fonction cardiaque, l'animal perd aussi sa capacité à excréter le sodium, et par cette action sa capacité à excréter l'eau dans les urines. Cette perte de capacité peut conduire à une augmentation du volume sanguin et à de l'œdème.

La restriction en sodium doit être raisonnée et doit se faire en regard de la clinique. Dans le stade asymptomatique, la restriction en sodium n'est pas nécessaire. En effet, à ce stade les animaux sont parfaitement capables de maintenir l'homéostasie du sodium et même de gérer des alimentations riches en sodium (bien que celles-ci soient hautement déconseillées). De plus, une réduction de l'apport en sodium active le système rénine angiotensine. Or, bien que cela n'ait pas eu d'effet néfaste lors de l'étude, cela n'est pas désirable<sup>45,46</sup>.

Lors d'une décompensation les opinions d'expert tendent à privilégier une légère diminution de l'apport en sodium inférieur à 0.5g/Mcal de BEE et à 0.3g/Mcal de BEE pour les cas les plus avancés<sup>3,47</sup>. Les bénéfices d'une réduction en sodium semblent plus importants dans le cadre d'une MVD que d'une CMD chez le chien<sup>47</sup>.

Il est à noter que le niveau de preuve sur l'efficacité de la restriction en sodium dans le cadre d'un animal recevant une médication est faible, mais cette restriction a pour principal but de diminuer la quantité de diurétique. De plus, une diminution trop importante du sodium dans l'aliment peut diminuer l'appétence de celui-ci. Il est donc nécessaire d'ajuster la quantité de sodium au regard de la quantité de diurétique et inversement.

Enfin, la plupart des propriétaires donnent des friandises avec une teneur élevée en sodium à leurs animaux<sup>32,33</sup>. De l'avis de l'auteur, il est nécessaire d'augmenter la pédagogie sur cette pratique, car elle peut amener à des taux en sodium importants.

## 9.3.4 Potassium et magnésium

L'utilisation d'inhibiteur de l'enzyme de conversion et de diurétique sur des animaux souffrant d'affection cardiaque peut aboutir à des pertes en potassium et magnésium, nécessitant d'adapter

l'aliment. En effet, ces pertes en ces deux électrolytes peuvent aboutir à une baisse de la contractilité cardiaque et à des arythmies.

#### 9.3.5 L-Carnitine

La l-carnitine est un élément majeur du métabolisme énergétique des cellules musculaires et notamment cardiaques, notamment en permettant le transport des acides gras long à l'intérieur de la mitochondrie et en y évacuant certains composés toxiques<sup>48</sup>.

Chez le chien des cardiomyopathies consécutives à un déficit en l-carnitine, parfois familliale, ont été décrites et traitées avec succès par une supplémentation<sup>49-51</sup>. A la connaissance de l'auteur, hormis ces cas particuliers, aucune étude n'a mis en évidence chez le chien un intérêt, dans le cas général, à un apport plus élevé en l-carnitine. Cependant, des études semblent indiquer qu'une carence en l-carnitine peut être secondaire à l'insuffisance cardiaque<sup>52</sup>. Une récente étude chez l'homme, où son efficacité est aussi controversée, semble indiquer que la l-carnitine à une action bénéfique dans le cadre de l'insuffisance cardiaque<sup>53</sup>.

Compte tenu de la bonne tolérance du chien comme du chat envers la l-carnitine, que celle-ci pourrait être utile et que la supplémentation a eu une action dans certains cas, la complémentation en l-carnitine peut-être proposée. Cependant, les doses proposées par certains cardiologues sont 50 à 100 mg/kg trois fois par jour dans le cadre des CMD<sup>54</sup>, ce qui sont des doses bien supérieures aux aliments avec un objectif nutritionnel particulier. Un apport plus faible, fourni par l'alimentation a peut-être un effet bénéfique, mais n'est pas supporté actuellement par la littérature.

Une partie des propriétaires ont tendance à complémenter d'eux-mêmes les rations de leurs animaux (surtout les chiens) avec des compléments alimentaires contenant de la taurine et de la l-carnitine<sup>32,33</sup>. Il est important de les prévenir des problèmes de contamination et de qualité du principe actif.

#### Aliments riches en L-carnitine

Il existe un complément alimentaire (de qualité) produit par un laboratoire vétérinaire et contenant de la taurine : l'Isulik de Sogeval. Il est dosé à 400mg/mL.

Les aliments contenant de la l-carnitine sont principalement les viandes, notamment les viandes rouges, quelques grammes par kilogramme de matières sèches<sup>55</sup>.

## 9.3.6 Taurine

La taurine est un acide aminé sulfuré non protéogène. Elle est retrouvée en grade quantité dans les muscles et notamment le cœur<sup>56</sup>. Cependant, l'ensemble de ses rôles et ses mécanismes d'action ne sont que peu connu<sup>57</sup>. On peut tout de même citer des rôles dans l'homéostasie cellulaire, incluant celle du calcium, la gestion des radicaux libres, la contractilité cardiaque et l'antagonisme de l'angiotensine<sup>58-60</sup>.

Comme précisé plus haut, les carences en taurines furent assez courante chez le chat dans les années 80<sup>18</sup>. De même, chez le chien de nombreuses carences en taurine ont été reportées à la suite d'une alimentation carencée en taurine, en protéines ou peu digestible<sup>12-14,61,62</sup>. Dans le cas de CMD du a des carences en taurine, une supplémentation en taurine est nécessaire et permet d'obtenir une amélioration. L'amélioration obtenue chez les chiens est moins spectaculaire que celle obtenue chez les chats. De plus, les modifications concernant les paramètres échocardiographiques peuvent prendre plusieurs mois à être visibles. Dans le cas d'une CMD du à une carence en taurine la dose recommandée est comprise entre 250mg pour un animal de moins de 10kg, 500mg jusqu'à 20kg et 1g au-delà, le tout 3 fois par jour<sup>3</sup>. Comme pour la l-carnitine, la dose exacte n'est pas connue et il

pourrait y avoir un intérêt à apporter de la taurine à l'ensemble des animaux souffrant d'une affection cardiaque, même si ce n'est actuellement pas supporté par la littérature.

#### Aliments riches en taurine

A la connaissance de l'auteur, il n'y a pas de complément alimentaire contenant de la taurine et produit par un laboratoire renommé permettant d'assurer de sa qualité.

La table 9.2 reprend les concentrations en taurine de quelques aliments rapportés par Spitze et al.<sup>56</sup>. Ce tableau met en évidence que les muscles ayant une activité aérobie sont plus riches en taurine (muscle sombre du poulet et cœurs) que ceux ayant une activité anaérobie.

| Aliment                 | concentration | en | taurine | concentration | en | taurine |
|-------------------------|---------------|----|---------|---------------|----|---------|
|                         | (mg/kg)       |    |         | (mg/kg MS)    |    |         |
| Bœuf steak haché cru    | 398           |    |         | 1275          |    |         |
| Bœuf cœur cru           | 652           |    |         | 3 461         |    |         |
| Bœuf foie cru           | 688           |    |         | 2 359         |    |         |
| Bœuf foie bouilli       | 73            |    |         | -             |    |         |
| Fromages (divers)       | [0-61.3]      |    |         | [0-63.5]      |    |         |
| Œuf blanc               | 0             |    |         | 0             |    |         |
| Œuf jaune               | 12.14         |    |         | 24.47         |    |         |
| Poulet, viandes claires | 180           |    |         | -             |    |         |
| Poulet, viandes sombres | 1 690         |    |         | -             |    |         |
| Poulet, foie et cœur    | 1 100         |    |         | 4 668         |    |         |

TABLE 9.2: Exemple de quelques aliments contenant de la taurine

#### 9.3.7 Autres nutriments

De nombreux autres nutriments ont été décrits comme pouvant avoir un effet bénéfique sur les animaux ou les humains atteints d'insuffisance cardiaque comme l'**arginine** qui augmenterait la concentration en monoxyde d'azote endothélial et ainsi favoriserait la vasodilatation et l'oxygénation cardiaque<sup>63-65</sup>; la **coenzyme Q10** qui est une coenzyme des réactions mitochondriale et a une action antioxydante et qui pourrait avoir un effet bénéfique<sup>66</sup>; et enfin, les **antioxydants** pour contrebalancer l'oxydation induite par l'insuffisance cardiaque<sup>45,67</sup>.

Cependant, pour l'ensemble de ces molécules l'efficacité et les doses associées ne sont pas connues.

## 9.4 Aliments commerciaux

Il existe peu d'aliments commerciaux avec un objectif nutritionnel particulier de "Soutien de la fonction cardiaque en cas d'insuffisance cardiaque chronique" chez le chien et quasiment aucun chez le chat. La directive demande à ce que ces aliments aient une teneur en sodium inférieur à 2.6 g/kg pour les croquettes.

Pour ce qui est des caractéristiques générales de ces aliments, chez le chien et par rapport aux aliments vétérinaires physiologiques, ils sont généralement plus denses en considérant l'énergie (Figure 9.1), avec un apport diminué en sodium et chlore (Figure 9.2). Les apport en potassium, magnésium, EPA, taurine, et l-carnitine sont augmentés (Figure 9.2, 9.3 et 9.4). Bien que ces taux

élevés en nutriment ne soient pas obligatoires, les aliments industriels tentent de répondre aux opinions des experts du domaine. Cependant, une grande variabilité existe parmi ces aliments permettant au vétérinaire d'adapter sa prescription au cas par cas.

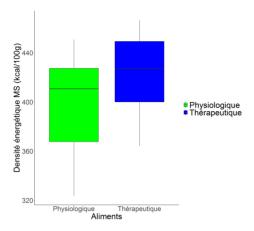



FIGURE 9.1: Densité énergétique en matière sèche des aliments avec un ONP cardiaque à destination du chien, par rapport aux aliments physiologiques des marques vétérinaires.

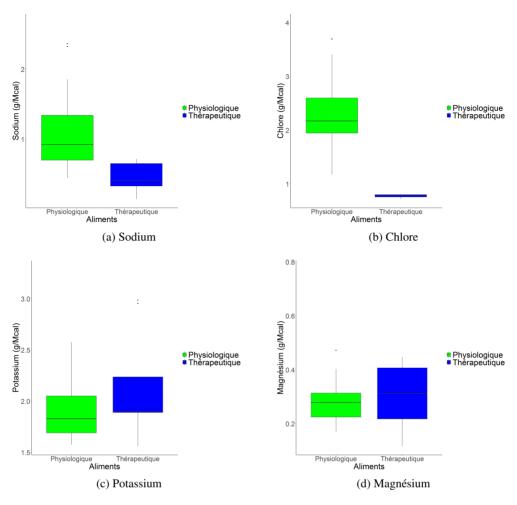



FIGURE 9.2: Apport en sodium, chlore potassium et magnésium des aliments avec un ONP cardiaque à destination du chien, par rapport aux aliments physiologiques des marques vétérinaires.

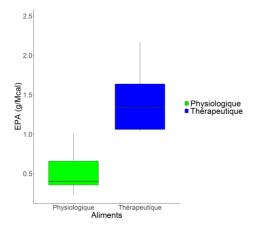



FIGURE 9.3: Apport en EPA des aliments avec un ONP cardiaque à destination du chien, par rapport aux aliments physiologiques des marques vétérinaires.

Conclusion 143

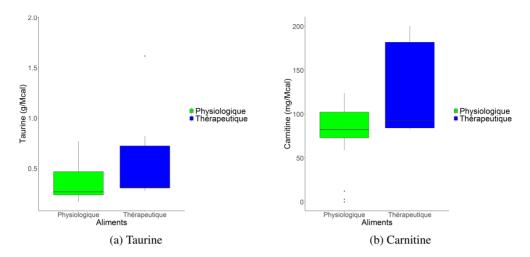



FIGURE 9.4: Apport en taurine et en L-carnitine des aliments avec un ONP cardiaque à destination du chien, par rapport aux aliments physiologiques des marques vétérinaires.

Pour les chats en raison des éléments attendus pour un aliment à destination des animaux avec une affection cardiaque l'une des possibilités est de sélectionner un aliment parmi ceux ayant un objectif nutritionnel particulier de soutien de la fonction rénale. Attention, dans cet objectif nutritionnel particulier, certains aliments ont une teneur importante en sodium et devraient être évité lors d'une affection cardiaque.

# 9.5 Conclusion

L'alimentation, en cas d'affection cardiaque, est un élément important à prendre en compte et à adapter notamment au regard des traitements médicaux. Il est important de donner une alimentation appropriée à la progression clinique de la maladie et de prévenir autant que possible la cachexie cardiaque.

#### 9.6 Exercices

Exercice 9.1 Salaï est une chienne Border Collie Stérilisée de 10 ans pesant 22.6 kg (NEC 4/5, poids idéal historique 19.1kg). Elle souffre d'une maladie valvulaire dégénérative stade ACVIM B2 compensée. Actuellement, elle est nourrie avec 250g de Royal Canin Cardiac.

Analysez et critiquez la ration actuelle de Salaï. Proposez, si nécessaire, une prise en charge nutritionnelle.

Exercice 9.2 La propriétaire de Salaï revient vous voir, à présent elle pèse 19.3 kg (NEC 3/5). Elle souffre d'une maladie valvulaire dégénérative stade ACVIM C, décompensation, stabilisée avec un traitement médicamenteux.

Proposez une prise en charge nutritionnelle.

# 9.7 Références

- [1] D. K. DETWEILER et D. F. PATTERSON. "The Prevalence and Types of Cardiovascular Disease in Dogs". In: *Ann. N. Y. Acad. Sci.* 127.1 (8 sept. 1965), pages 481-516. ISSN: 0077-8923. DOI: 10.1111/j.1749-6632.1965.tb49421.x. pmid: 5217276 (cf. page 136).
- [2] J. W. BUCHANAN. "Chronic Valvular Disease (Endocardiosis) in Dogs". In: *Adv Vet Sci Comp Med* 21 (1977), pages 75-106. ISSN: 0065-3519. pmid: 146409 (cf. page 136).
- [3] Lisa M. Freeman et John E. Rush. "Nutritional Management of Cardiovascular Diseases". In: *Applied Veterinary Clinical Nutrition*. John Wiley & Sons, Ltd, 2013, pages 301-313. ISBN: 978-1-118-78566-9. DOI: 10.1002/9781118785669. ch18 (cf. pages 136, 138, 139).
- [4] P. G. DARKE. "Valvular Incompetence in Cavalier King Charles Spaniels". In: *Vet. Rec.* 120.15 (11 avr. 1987), pages 365-366. ISSN: 0042-4900. DOI: 10.1136/vr.120.15.365. pmid: 3590588 (cf. page 136).
- [5] A. W. BEARDOW et J. W. BUCHANAN. "Chronic Mitral Valve Disease in Cavalier King Charles Spaniels: 95 Cases (1987-1991)". In: *J. Am. Vet. Med. Assoc.* 203.7 (1<sup>er</sup> oct. 1993), pages 1023-1029. ISSN: 0003-1488. pmid: 8135932 (cf. page 136).
- [6] J. HÄGGSTRÖM et al. "Chronic Valvular Disease in the Cavalier King Charles Spaniel in Sweden". In: *Vet. Rec.* 131.24 (12 déc. 1992), pages 549-553. ISSN: 0042-4900. pmid: 1481344 (cf. page 136).
- [7] S. SWIFT, A. BALDIN et P. CRIPPS. "Degenerative Valvular Disease in the Cavalier King Charles Spaniel: Results of the UK Breed Scheme 1991–2010". In: *J Vet Intern Med* 31.1 (2017), pages 9-14. ISSN: 0891-6640. DOI: 10.1111/jvim.14619. pmid: 28054393 (cf. page 136).
- [8] Michele BORGARELLI et James W. BUCHANAN. "Historical Review, Epidemiology and Natural History of Degenerative Mitral Valve Disease". In: *Journal of Veterinary Cardiology*. The Mitral Valve 14.1 (1<sup>er</sup> mar. 2012), pages 93-101. ISSN: 1760-2734. DOI: 10.1016/j.jvc.2012.01.011 (cf. page 136).
- [9] Kathryn M. MEURS et al. "Comparison of In-Hospital versus 24-Hour Ambulatory Electrocardiography for Detection of Ventricular Premature Complexes in Mature Boxers". In: *Journal of the American Veterinary Medical Association* 218.2 (1<sup>er</sup> jan. 2001), pages 222-224. ISSN: 0003-1488. DOI: 10.2460/javma.2001.218.222 (cf. page 136).
- [10] Clay A. CALVERT et al. "Association between Results of Ambulatory Electrocardiography and Development of Cardiomyopathy during Long-Term Follow-up of Doberman Pinschers". In: *Journal of the American Veterinary Medical Association* 216.1 (1er jan. 2000), pages 34-39. ISSN: 0003-1488. DOI: 10.2460/javma.2000.216.34 (cf. page 136).
- [11] Linda P. CASE et al. "Chapter 38 Nutrition and the Heart". In: Canine and Feline Nutrition (THIRD EDITION). Saint Louis: Mosby, 2011, pages 511-519. ISBN: 978-0-323-06619-8. URL: http://www.sciencedirect.com/science/article/pii/B9780323066198100386 (visité le 06/12/2016) (cf. pages 136, 137).
- [12] Andrea J. FASCETTI et al. "Taurine Deficiency in Dogs with Dilated Cardiomyopathy: 12 Cases (1997–2001)". In: *Journal of the American Veterinary Medical Association* 223.8 (1er oct. 2003), pages 1137-1141. ISSN: 0003-1488. DOI: 10.2460/javma.2003.223.1137 (cf. pages 136, 139).

[13] Joanna L. KAPLAN et al. "Taurine Deficiency and Dilated Cardiomyopathy in Golden Retrievers Fed Commercial Diets". In: *PLOS ONE* 13.12 (13 déc. 2018), e0209112. ISSN: 1932-6203. DOI: 10.1371/journal.pone.0209112 (cf. pages 136, 139).

- [14] Robert C. BACKUS et al. "Low Plasma Taurine Concentration in Newfoundland Dogs Is Associated with Low Plasma Methionine and Cyst(e)Ine Concentrations and Low Taurine Synthesis". In: *J. Nutr.* 136.10 (oct. 2006), pages 2525-2533. ISSN: 0022-3166. DOI: 10.1093/jn/136.10.2525. pmid: 16988121 (cf. pages 136, 139).
- [15] A. TIDHOLM, H. SVENSSON et C. SYLVÉN. "Survival and Prognostic Factors in 189 Dogs with Dilated Cardiomyopathy". In: *J Am Anim Hosp Assoc* 33.4 (1997 Jul-Aug), pages 364-368. ISSN: 0587-2871. DOI: 10.5326/15473317-33-4-364. pmid: 9204475 (cf. page 136).
- [16] Eric MONNET et al. "Idiopathic Dilated Cardiomyopathy in Dogs: Survival and Prognostic Indicators". In: *Journal of Veterinary Internal Medicine* 9.1 (1995), pages 12-17. ISSN: 1939-1676. DOI: 10.1111/j.1939-1676.1995.tb03266.x (cf. page 136).
- [17] M. L. SKILES et al. "Epidemiologic Evaluation of Taurine Deficiency and Dilated Cardiomyopathy in Cats." In: *Journal of Veterinary Internal Medicine* 4.2 (1990). ISSN: 0891-6640. URL: https://www.cabdirect.org/cabdirect/abstract/19902209659 (visité le 14/12/2019) (cf. page 136).
- [18] P. D. PION et al. "Myocardial Failure in Cats Associated with Low Plasma Taurine: A Reversible Cardiomyopathy". In: *Science* 237.4816 (14 août 1987), pages 764-768. ISSN: 0036-8075. DOI: 10.1126/science.3616607. pmid: 3616607 (cf. pages 136, 139).
- [19] FDA. "FDA Investigation into Potential Link between Certain Diets and Canine Dilated Cardiomyopathy". In: FDA (Tue, 07/02/2019 19:10). URL: http://www.fda.gov/animal-veterinary/news-events/fda-investigation-potential-link-between-certain-diets-and-canine-dilated-cardiomyopathy (visité le 18/11/2019) (cf. page 136).
- [20] Etienne Côté et al. "Assessment of the Prevalence of Heart Murmurs in Overtly Healthy Cats". In: *J. Am. Vet. Med. Assoc.* 225.3 (1<sup>er</sup> août 2004), pages 384-388. ISSN: 0003-1488. DOI: 10.2460/javma.2004.225.384. pmid: 15328713 (cf. page 136).
- [21] Suzanne GUNDLER, Anna TIDHOLM et Jens HÄGGSTRÖM. "Prevalence of Myocardial Hypertrophy in a Population of Asymptomatic Swedish Maine Coon Cats". In: *Acta Vet Scand* 50.1 (18 juin 2008), page 22. ISSN: 0044-605X. DOI: 10.1186/1751-0147-50-22. pmid: 18564408 (cf. page 136).
- [22] John E. Rush et al. "Population and Survival Characteristics of Cats with Hypertrophic Cardiomyopathy: 260 Cases (1990-1999)". In: *J. Am. Vet. Med. Assoc.* 220.2 (15 jan. 2002), pages 202-207. ISSN: 0003-1488. DOI: 10.2460/javma.2002.220.202. pmid: 12126131 (cf. page 136).
- [23] Kathryn M. MEURS et al. "A Cardiac Myosin Binding Protein C Mutation in the Maine Coon Cat with Familial Hypertrophic Cardiomyopathy". In: *Hum Mol Genet* 14.23 (1<sup>er</sup> déc. 2005), pages 3587-3593. ISSN: 0964-6906. DOI: 10.1093/hmg/ddi386 (cf. page 136).
- [24] Kathryn M. MEURS et al. "A Substitution Mutation in the Myosin Binding Protein C Gene in Ragdoll Hypertrophic Cardiomyopathy". In: *Genomics* 90.2 (1<sup>er</sup> août 2007), pages 261-264. ISSN: 0888-7543. DOI: 10.1016/j.ygeno.2007.04.007 (cf. page 136).

- [25] J L POUCHELON et al. "Cardiovascular—Renal Axis Disorders in the Domestic Dog and Cat: A Veterinary Consensus Statement". In: *J Small Anim Pract* 56.9 (sept. 2015), pages 537-552. ISSN: 0022-4510. DOI: 10.1111/jsap.12387. pmid: 26331869 (cf. page 137).
- [26] HALL J E et al. "Obesity-Induced Hypertension. Renal Function and Systemic Hemodynamics." In: *Hypertension* 22.3 (1<sup>er</sup> sept. 1993), pages 292-299. DOI: 10.1161/01.HYP.22.3.292 (cf. page 137).
- [27] F. CONTALDO et al. "Obesity, Heart Failure and Sudden Death". In: *Nutr Metab Cardiovasc Dis* 12.4 (août 2002), pages 190-197. ISSN: 0939-4753. pmid: 12514939 (cf. page 137).
- [28] Deanna L. INESON, Lisa M. FREEMAN et John E. RUSH. "Clinical and Laboratory Findings and Survival Time Associated with Cardiac Cachexia in Dogs with Congestive Heart Failure". In: *Journal of Veterinary Internal Medicine* 33.5 (2019), pages 1902-1908. ISSN: 1939-1676. DOI: 10.1111/jvim.15566 (cf. page 137).
- [29] Sasha L. SANTIAGO, Lisa M. FREEMAN et John E. RUSH. "Cardiac Cachexia in Cats with Congestive Heart Failure: Prevalence and Clinical, Laboratory, and Survival Findings". In: *Journal of Veterinary Internal Medicine* n/a.n/a (2019). ISSN: 1939-1676. DOI: 10.1111/jvim.15672 (cf. page 137).
- [30] J. L. SLUPE, L. M. FREEMAN et J. E. RUSH. "Association of Body Weight and Body Condition with Survival in Dogs with Heart Failure". In: *Journal of Veterinary Internal Medicine* 22.3 (2008), pages 561-565. ISSN: 1939-1676. DOI: 10.1111/j.1939-1676. 2008.0071.x (cf. page 137).
- [31] K. F. MALLERY et al. "Factors Contributing to the Decision for Euthanasia of Dogs with Congestive Heart Failure". In: *J. Am. Vet. Med. Assoc.* 214.8 (15 avr. 1999), pages 1201-1204. ISSN: 0003-1488. pmid: 10212683 (cf. page 137).
- [32] Lisa M. FREEMAN et al. "Evaluation of Dietary Patterns in Dogs with Cardiac Disease". In: Journal of the American Veterinary Medical Association 223.9 (1er nov. 2003), pages 1301-1305. ISSN: 0003-1488. DOI: 10.2460/javma.2003.223.1301 (cf. pages 137-139).
- [33] Danielle S. TORIN, Lisa M. FREEMAN et John E. RUSH. "Dietary Patterns of Cats with Cardiac Disease". In: *Journal of the American Veterinary Medical Association* 230.6 (1er mar. 2007), pages 862-867. ISSN: 0003-1488. DOI: 10.2460/javma.230.6.862 (cf. pages 137-139).
- [34] J. BLAKE et R. B. DEVEREUX. "Differential Effects of Direct Antagonism of AII Compared to ACE Inhibitors on Serum Potassium Levels and Azotemia in Patients with Severe Congestive Heart Failure". In: Congest Heart Fail 6.4 (2000 Jul-Aug), pages 193-196. ISSN: 1751-7133. DOI: 10.1111/j.1527-5299.2000.80157.x. pmid: 12147952 (cf. page 137).
- [35] Eric T. POEHLMAN. "Increased Resting Metabolic Rate in Patients with Congestive Heart Failure". In: *Ann Intern Med* 121.11 (1<sup>er</sup> déc. 1994), page 860. ISSN: 0003-4819. DOI: 10.7326/0003-4819-121-11-199412010-00006 (cf. page 137).
- [36] Beth LEVINE et al. "Elevated Circulating Levels of Tumor Necrosis Factor in Severe Chronic Heart Failure". In: *New England Journal of Medicine* 323.4 (26 juil. 1990), pages 236-241. ISSN: 0028-4793. DOI: 10.1056/NEJM199007263230405. pmid: 2195340 (cf. page 137).
- [37] L. M. FREEMAN et R. ROUBENOFF. "The Nutrition Implications of Cardiac Cachexia". In: *Nutr. Rev.* 52.10 (oct. 1994), pages 340-347. ISSN: 0029-6643. DOI: 10.1111/j.1753-4887.1994.tb01358.x. pmid: 7816351 (cf. page 137).

[38] Lisa M. FREEMAN. "Beneficial Effects of Omega-3 Fatty Acids in Cardiovascular Disease". In: *Journal of Small Animal Practice* 51.9 (2010), pages 462-470. ISSN: 1748-5827. DOI: 10.1111/j.1748-5827.2010.00968.x (cf. page 138).

- [39] Yulia HIRSCHBERG et al. "The Effects of Chronic Fish Oil Feeding in Rats on Protein Catabolism Induced by Recombinant Mediators". In: *Metabolism Clinical and Experimental* 39.4 (1<sup>er</sup> avr. 1990), pages 397-402. ISSN: 0026-0495, 1532-8600. DOI: 10.1016/0026-0495(90)90255-B. pmid: 2325561 (cf. page 138).
- [40] Scott A. BROWN et al. "Beneficial Effects of Chronic Administration of Dietary ω-3 Polyunsaturated Fatty Acids in Dogs with Renal Insufficiency". In: *Journal of Laboratory and Clinical Medicine* 131.5 (1<sup>er</sup> mai 1998), pages 447-455. ISSN: 0022-2143. DOI: 10.1016/S0022-2143(98)90146-9 (cf. page 138).
- [41] L. M. FREEMAN et al. "Nutritional Alterations and the Effect of Fish Oil Supplementation in Dogs with Heart Failure". In: *J. Vet. Intern. Med.* 12.6 (1998 Nov-Dec), pages 440-448. ISSN: 0891-6640. DOI: 10.1111/j.1939-1676.1998.tb02148.x. pmid: 9857337 (cf. page 138).
- [42] A. LEAF et al. "Membrane Effects of the N-3 Fish Oil Fatty Acids, Which Prevent Fatal Ventricular Arrhythmias". In: *J Membrane Biol* 206.2 (1er juil. 2005), pages 129-139. ISSN: 1432-1424. DOI: 10.1007/s00232-005-0789-9 (cf. page 138).
- [43] Caren E. SMITH et al. "Omega-3 Fatty Acids in Boxer Dogs with Arrhythmogenic Right Ventricular Cardiomyopathy". In: *J. Vet. Intern. Med.* 21.2 (2007 Mar-Apr), pages 265-273. ISSN: 0891-6640. DOI: 10.1892/0891-6640(2007)21[265:ofaibd] 2.0.co; 2. pmid: 17427387 (cf. page 138).
- [44] Qinghong LI et al. "Mct-Based Nutrition Blend for Cardiac Protection and Treating Degenerative Mitral Valve Disease in Companion Animals". Brevet américain 20170332686A1.

  NESTEC SA. 23 nov. 2017. URL: https://patents.google.com/patent/US20170332686A1/en (visité le 14/12/2019) (cf. page 138).
- [45] Lisa M. Freeman, John E. Rush et Peter J. Markwell. "Effects of Dietary Modification in Dogs with Early Chronic Valvular Disease". In: *Journal of Veterinary Internal Medicine* 20.5 (2006), pages 1116-1126. ISSN: 1939-1676. DOI: 10.1111/j.1939-1676.2006.tb00709.x (cf. pages 138, 140).
- [46] H. D. PEDERSEN. "Effects of Mild Mitral Valve Insufficiency, Sodium Intake, and Place of Blood Sampling on the Renin-Angiotensin System in Dogs". In: *Acta Vet. Scand.* 37.1 (1996), pages 109-118. ISSN: 0044-605X. pmid: 8659339 (cf. page 138).
- [47] John E. Rush et al. "Clinical, Echocardiographic, and Neurohormonal Effects of a Sodium-Restricted Diet in Dogs with Heart Failure". In: *Journal of Veterinary Internal Medicine* 14.5 (2000), pages 513-520. ISSN: 1939-1676. DOI: 10.1111/j.1939-1676.2000.tb02269.x (cf. page 138).
- [48] Paul D. PION, Sherry L. SANDERSON et Mark D. KITTELSON. "The Effectiveness of Taurine and Levocarnitine in Dogs with Heart Disease". In: *Veterinary Clinics: Small Animal Practice* 28.6 (1er nov. 1998), pages 1495-1514. ISSN: 0195-5616, 1878-1306. DOI: 10.1016/S0195-5616(98)50134-9. pmid: 10098250 (cf. page 139).

- [49] Nick D. Costa et Robert H. Labuc. "Case Report: Efficacy of Oral Carnitine Therapy for Dilated Cardiomyopathy in Boxer Dogs". In: *The Journal of Nutrition* 124 (suppl\_12 1er déc. 1994), 2687S-2692S. ISSN: 0022-3166, 1541-6100. Doi: 10.1093/jn/124.suppl\_12. 2687S (cf. page 139).
- [50] B. W. KEENE et al. "Myocardial L-Carnitine Deficiency in a Family of Dogs with Dilated Cardiomyopathy". In: *J. Am. Vet. Med. Assoc.* 198.4 (15 fév. 1991), pages 647-650. ISSN: 0003-1488. pmid: 2019534 (cf. page 139).
- [51] Bruce W. KEENE. "L-Carnitine Supplementation in the Therapy of Canine Dilated Cardiomyopathy". In: *Veterinary Clinics of North America: Small Animal Practice* 21.5 (1<sup>er</sup> sept. 1991), pages 1005-1009. ISSN: 0195-5616. DOI: 10.1016/S0195-5616(91)50108-X (cf. page 139).
- [52] Kathleen MC ENTEE et al. "Metabolic and Structural Abnormalities in Dogs with Early Left Ventricular Dysfunction Induced by Incessant Tachycardia". In: *American Journal of Veterinary Research* 62.6 (1er juin 2001), pages 889-894. ISSN: 0002-9645. DOI: 10.2460/ajvr.2001.62.889 (cf. page 139).
- [53] Xiaolong SonG et al. "Efficacy and Safety of L-Carnitine Treatment for Chronic Heart Failure: A Meta-Analysis of Randomized Controlled Trials". In: *Biomed Res Int* 2017 (2017). ISSN: 2314-6133. DOI: 10.1155/2017/6274854. pmid: 28497060 (cf. page 139).
- [54] Lisa M. FREEMAN. "Interventional Nutrition for Cardiac Disease". In: Clinical Techniques in Small Animal Practice. Interventional Nutrition 13.4 (1er nov. 1998), pages 232-237. ISSN: 1096-2867. DOI: 10.1016/S1096-2867 (98)80008-X (cf. page 139).
- [55] K SELINE et H JOHEIN. "The Determination of L-Carnitine in Several Food Samples". In: Food Chemistry 105.2 (2007), pages 793-804. ISSN: 03088146. DOI: 10.1016/j.foodchem. 2007.01.058 (cf. page 139).
- [56] A. R. SPITZE et al. "Taurine Concentrations in Animal Feed Ingredients; Cooking Influences Taurine Content". In: *Journal of Animal Physiology and Animal Nutrition* 87.7-8 (août 2003), pages 251-262. ISSN: 0931-2439, 1439-0396. DOI: 10.1046/j.1439-0396.2003.00434. x (cf. pages 139, 140).
- [57] Stephen W SCHAFFER et al. "Physiological Roles of Taurine in Heart and Muscle". In: *J Biomed Sci* 17 (Suppl 1 24 août 2010), S2. ISSN: 1021-7770. DOI: 10.1186/1423-0127-17-S1-S2. pmid: 20804594 (cf. page 139).
- [58] S. W. SCHAFFER, J. KRAMER et J. P. CHOVAN. "Regulation of Calcium Homeostasis in the Heart by Taurine". In: *Fed. Proc.* 39.9 (juil. 1980), pages 2691-2694. ISSN: 0014-9446. pmid: 7398899 (cf. page 139).
- [59] R. J. HUXTABLE. "Physiological Actions of Taurine". In: Physiological Reviews 72.1 (1er jan. 1992), pages 101-163. ISSN: 0031-9333. DOI: 10.1152/physrev.1992.72.1.101 (cf. page 139).
- [60] R. J. HUXTABLE, J. CHUBB et J. AZARI. "Physiological and Experimental Regulation of Taurine Content in the Heart". In: *Fed. Proc.* 39.9 (juil. 1980), pages 2685-2690. ISSN: 0014-9446. pmid: 6249646 (cf. page 139).

[61] Sherry L. SANDERSON et al. "Effects of Dietary Fat and L-Carnitine on Plasma and Whole Blood Taurine Concentrations and Cardiac Function in Healthy Dogs Fed Protein-Restricted Diets". In: *American Journal of Veterinary Research* 62.10 (1er oct. 2001), pages 1616-1623. ISSN: 0002-9645. DOI: 10.2460/ajvr.2001.62.1616 (cf. page 139).

- [62] Alan TENAGLIA et Robert CODY. "Evidence for a Taurine-Deficiency Cardiomyopathy". In: *The American Journal of Cardiology* 62.1 (1<sup>er</sup> juil. 1988), pages 136-139. ISSN: 0002-9149. DOI: 10.1016/0002-9149(88)91379-3 (cf. page 139).
- [63] Rainer HAMBRECHT et al. "Correction of Endothelial Dysfunction in Chronic Heart Failure: Additional Effects of Exercise Training and Oral L-Arginine Supplementation". In: *Journal of the American College of Cardiology* 35.3 (1<sup>er</sup> mar. 2000), pages 706-713. ISSN: 0735-1097. DOI: 10.1016/S0735-1097 (99)00602-6 (cf. page 140).
- [64] Armelle M. de LAFORCADE, Lisa M. FREEMAN et John E. RUSH. "Serum Nitrate and Nitrite in Dogs with Spontaneous Cardiac Disease". In: *Journal of Veterinary Internal Medicine* 17.3 (2003), pages 315-318. ISSN: 1939-1676. DOI: 10.1111/j.1939-1676.2003.tb02454.x (cf. page 140).
- [65] Stuart D. KATZ. "The Role of Endothelium-Derived Vasoactive Substances in the Pathophysiology of Exercise Intolerance in Patients with Congestive Heart Failure". In: *Progress in Cardiovascular Diseases*. Exercise Limitation in Congestive Heart Failure. II. 38.1 (1<sup>er</sup> juil. 1995), pages 23-50. ISSN: 0033-0620. DOI: 10.1016/S0033-0620(05)80012-X (cf. page 140).
- [66] Amy K. HARKER-MURRAY et al. "The Role of Coenzyme Q10 in the Pathophysiology and Therapy of Experimental Congestive Heart Failure in the Dog". In: *Journal of Cardiac Failure* 6.3 (1er sept. 2000), pages 233-242. ISSN: 1071-9164. DOI: 10.1054/jcaf.2000.8839 (cf. page 140).
- [67] Lisa M. FREEMAN et al. "Antioxidant Status and Biomarkers of Oxidative Stress in Dogs with Congestive Heart Failure". In: *Journal of Veterinary Internal Medicine* 19.4 (2005), pages 537-541. ISSN: 1939-1676. DOI: 10.1111/j.1939-1676.2005.tb02724.x (cf. page 140).



Sébastien Lefebvre

#### 10.1 Introduction

L'estomac assure les premières étapes significatives de la digestion chimique et enzymatique. Il est le sujet d'un équilibre précaire entre les mécanismes de digestion et ceux de protection de la muqueuse digestive. Cet équilibre nécessite un bon fonctionnement du sphincter œsophagien inférieur et du sphincter pylorique, l'intégrité de la muqueuse stomacale et la bonne régulation des sécrétions gastriques.

Or, le tube digestif supérieur peut être sujet à de nombreuses agressions du fait que ce soient les premiers organes digestifs en contact avec le bolus alimentaire. Que celles-ci soient physiques (corps étranger), chimiques (absorption de produits ménagers) ou encore infectieuses, elles peuvent diminuer le bon fonctionnement des organes, causer une inflammation voir des ulcères. Ces effets néfastes peuvent être entretenus par les secrétions gastriques. En plus de ces agressions, certaines races souffrent d'une conformation anormale de cette portion du tube digestif rendant dysfonctionnels certains mécanismes de protection contre les sucs gastrique ou certaines fonctions de la digestion.

Le plus couramment, c'est une inflammation de l'estomac (gastrite) qui survient. Elle est accompagnée ou non d'ulcère. Le symptôme d'appel des gastrites est les vomissements, mais cela peut aussi être de l'anorexie. Attention, la présence de vomissement n'est pas pathognomonique d'une gastrite! La gastrite est considérée aiguë si son évolution se fait sur quelques jours et chronique au-delà d'une à deux semaines.

Le but du vétérinaire est, en plus du traitement étiologique s'il est indiqué, d'accompagner l'animal en facilitant la digestion de cette portion du tube digestif et en limitant l'entretien des lésions. En plus des traitement médicamenteux disponibles, et qui ne sont pas le sujet de ce chapitre, il est intéressant de s'appuyer sur l'alimentation pour influer sur la physiologie de l'estomac et ainsi

minimiser les symptômes et/ou limiter l'entretien des lésions.

En plus des troubles de la fonction gastrique et des lésion de l'estomac, ce chapitre traitera aussi du syndrome de dilatation-torsion de l'estomac. Mais nous ne traiterons pas des éléments particuliers concernant l'alimentation en soins intensifs.

# 10.2 Éléments généraux

## 10.2.1 Les gastrites et ulcères gastriques

L'origine des gastrites peut être diverse, du corps étranger à la maladie rénale chronique en passant par les causes infectieuses, iatrogènes ou d'hypersensibilité alimentaire. Ainsi, les facteurs de risques des gastrites sont plus situationnels et environnementaux que génétiques. Bien que quelques articles aient identifié des races plus exposées que d'autres<sup>1</sup>. Ainsi concernant les gastrites consécutives de l'ingestion d'un corps étranger, ce sont surtout les jeunes animaux et ceux sans surveillance qui y sont sujets. A l'inverse, les gastrites consécutives d'une affection chronique comme la maladie rénale chronique touchent plutôt les chiens et chats âgés.

Parmi les ingestions pouvant le plus souvent aboutir à des gastrites ulcératives, celle de produits corrosifs sont les plus fréquentes. Si la plupart du temps ces ingestions sont accidentelles, dans certains cas, cela peut être volontaire, comme le cas du peroxyde d'hydrogène à 3-5%. Il est couramment utilisé chez le chien comme émétique. En effet, il est réputé non toxique dans cette espèce. Cependant, son utilisation chez le chat peut conduire à des effets secondaires dans 25% des cas et peut même aboutir a une gastrite ulcérative avec de fortes doses<sup>2</sup>.

Il est aussi important de prendre en compte les gastrites d'origine iatrogène. Les mécanismes permettant la protection de la muqueuse gastrique font intervenir notamment la prostaglandine  $E_2$  mais aussi la  $D_2$  et  $I_2$ <sup>3</sup>. L'utilisation d'anti-inflammatoire stéroïdien<sup>4,5</sup> ou non<sup>6</sup> peut aboutir à une érosion de la muqueuse stomacale.

Les gastrites peuvent être une conséquence d'autres affections, notamment de la maladie rénale chronique (MRC), d'une insuffisance hépatique ou encore d'un hyperadrénocorticisme<sup>6</sup>. Dans une étude, 79% des chiens atteints de MRC souffraient de gastrite pouvant être ulcérative<sup>7</sup>. L'origine de ces lésions gastriques lors d'une MRC n'est pas encore clairement identifié. Pendant longtemps, il a été proposé qu'une élimination rénale insuffisante de la gastrine conduisait à une hyperacidité gastrique. Cependant cette hypothèse est actuellement remise en question au profit de celle d'un effet direct de l'urée sur la muqueuse gastrique<sup>3</sup>. Les ulcérations gastriques dues à la MRC seraient bien plus rares chez le chat au profit d'une minéralisation et/ou d'une fibrose des tissus gastriques<sup>8</sup>. De plus, une autre étude n'a pas mis en évidence d'augmentation de la concentration en gastrine sérique chez les chats atteints de maladie rénale chronique, ni de baisse du pH gastrique<sup>9</sup>.

L'anxiété est une étiologie de gastrite chronique bien décrite chez l'humain. Une étude récente tend à montrer que cette étiologie est aussi présente chez le chien. De plus, la douleur causée par la gastrite étant, elle aussi, source d'anxiété, elle participerait à l'entretien de cette dernière<sup>10</sup>.

Des gastrites et ulcères gastriques liés à l'effort ont été décrits chez le chien de sport, principalement chez les chiens de traineau<sup>11-13</sup>. Trente-cinq à quarante-huit pour cent des chiens de traineau participants à l'Iditarod présentent une ulcération, des érosions ou des hémorragies gastriques à l'endoscopie, quelques jours après la course<sup>14</sup>. Une étude nécropsique des 23 chiens morts sur la course entre 1994 et 2006 a conclu que trois sont morts des conséquences de la perforation d'un ulcère gastrique et que 10 présentaient une gastrite sans que cela soit directement lié à leur mort<sup>13</sup>. Il a été fait un lien entre l'augmentation de la cortisolémie lors de l'exercice et un risque plus important d'ulcère gastrique chez le chien<sup>15</sup>. De plus, l'exercice augmente la perméabilité gastrique, ce qui

faciliterait la survenu des gastrites<sup>15-17</sup> Ces gastrites du chien de sport sont beaucoup moins étudiées que celle de l'humain ou du cheval, où l'effet de la gastrine (sécrétagogue gastrique) qui est produite lors de l'exercice est aussi suspectée d'être à l'origine de cette affection<sup>18,19</sup>. Enfin, l'utilisation de récompenses congelées lors des courses est aussi un élément susceptible de favoriser les gastrites et les ulcères chez le chien<sup>12</sup>

## 10.2.2 Les troubles de la vidange gastrique

Les troubles de la vidange gastrique surviennent quand, à la suite de problème de motilité, d'anomalies structurelles ou de corps étranger, l'estomac ne peut se vider dans un délai considéré comme normal et/ou complètement. Ces troubles peuvent être à l'origine de vomissements, de gastrite et peuvent aussi être un facteur de risque d'un syndrome de dilatation ou de dilatation torsion de l'estomac.

Le plus souvent les troubles de la vidange gastrique sont consécutifs d'une sténose pylorique congénitale ou d'un hypertrophie pylorique acquise. Les sténoses pyloriques sont le plus souvent observés chez les siamois<sup>20,21</sup> et les chiens brachycéphales<sup>22-24</sup>. Il est à noter que la prévalence des sténoses pyloriques chez les chiens brachycéphales est élevée, y compris en absence de symptômes digestifs<sup>22</sup>

### 10.2.3 Les syndromes de dilatation torsion de l'estomac

La dilatation gastrique est une affection commune du chien et plus particulièrement des grandes races<sup>25</sup>. Elle est une conséquence directe de la capacité d'extension de l'estomac du chien. Cette dilatation peu s'accompagner d'une rotation de l'estomac (on parle de syndrome de dilatation torsion de l'estomac (SDTE)), c'est alors une urgence vitale<sup>25,26</sup>. Une étude sur des chiens militaires a noté une incidence mensuelle de SDTE de 2.5 cas pour 1000 chiens<sup>27</sup>. Aujourd'hui encore, les causes exactes de la SDTE ne sont pas connues, elles sont certainement multifactorielles. De récentes études ont établi un lien entre les cas de SDTE et des allèles de l'immunité<sup>28</sup> ou des lignées particulières du microbiote<sup>29</sup>

Parmi les principaux facteurs de risques de SDTE on peut noter :

- les repas importants et la présence d'un seul repas par jour<sup>30,31</sup>.
- les animaux âgés<sup>32</sup>.
- la taille des croquettes, avec un risque augmenté pour des aliments < 5mm et diminué au delà de > 30mm $^{32}$ .
- la présence d'un corps étranger stomacal augmente de cinq fois le risque d'une dilatation torsion<sup>33</sup>.
- les chiens peureux ou nerveux<sup>31,34</sup>.
- les chiens actifs<sup>27</sup>.
- une vitesse importante d'ingestion<sup>35</sup>
- une gamelle surélevée<sup>35</sup>
- dans certaines races un ratio profondeur/largeur de la poitrine supérieur à 1.5<sup>36,37</sup>

Une enquête internet réalisée au Royaume-Uni auprès de propriétaires de chiens présentant des risques de SDTE semble montrer qu'une activité postprandiale modérée pourrait diminuer le risque de SDTE<sup>34</sup>. De plus, bien que longtemps l'alimentation sèche ait été suspectée d'être à l'origine des SDTE les études plus récentes montrent que ce n'est pas un facteur de risques, nonobstant la problématique de la taille des croquettes abordée plus haut<sup>30</sup>.

# 10.3 Éléments clefs de l'accompagnement nutritionnel

L'accompagnement nutritionnel des affections gastriques a pour but de limiter les lésions gastriques, de prévenir les vomissements et s'ils surviennent d'assurer un apport énergétique suffisant. L'accompagnement nutritionnel vient en support et non en remplacement des thérapies médicamenteuses

#### 10.3.1 Jeûne

Dans le cadre d'une gastrite aiguë, il a longtemps été conseillé d'assurer un jeûne ou une restriction alimentaire de 12 à 48 h<sup>38</sup>. Cette restriction a pour but de réduire les sécrétions gastriques et sa mobilité, et ainsi permettre un repos de l'organe. De plus, dans les cas d'ulcère hémorragique, la crainte est que les sécrétions et les mouvements de l'estomac détruisent le caillot conduisant à une reprise des saignements.

Sans que cette approche de jeûne/restriction alimentaire soit totalement écartée, elle est de plus en plus questionnée notamment en médecine humaine<sup>39,40</sup>. En effet, contrairement à l'hypothèse initiale, le tube digestif "vide" n'est pas au repos. Un péristaltisme de ménage continu d'opérer<sup>41</sup>. De plus, la faim peut entrainer des ondes péristaltiques plus violentes et douloureuses qu'en présence d'aliment<sup>42</sup>. Enfin, l'absence d'apport alimentaire, même sur une durée d'une journée, modifie sensiblement les capacités digestives de l'animal en diminuant la synthèse des enzymes digestives (notamment gastrique)<sup>43</sup> et en modifiant la structure des villosités du tube digestif<sup>44</sup>.

Quelques publications montrent qu'un rétablissement précoce de l'alimentation entérale après des épisodes violents de gastro-entéropathie (y compris hémorragiques) améliore le pronostic et la durée d'hospitalisation<sup>45,46</sup>. Cependant, le principal effet secondaire reporté est une plus grande occurrence de vomissements<sup>46</sup>. Ainsi, pour limiter les épisodes de vomissements tout en continuant de fournir une alimentation entérale, il est conseillé de nourrir l'animal à 25% de sont besoin énergétique au repos en première intention (pour rappel BER= 70\*Poids<sup>0.75</sup> pour le chien et le chat).

#### 10.3.2 L'humidité et la température

L'humidité du repas ainsi que sa température peuvent avoir un effet bénéfique sur le temps de vidange gastrique. Ainsi, chez le chat, le temps de vidange gastrique est plus court pour un aliment humide et dont la température est comprise entre 20°C et 37°C<sup>47,48</sup>. A l'inverse une température trop élevée ou trop basse de l'aliment ou de l'eau de boisson ont tendance à allonger le temps de vidange<sup>47,49-51</sup>. De plus, l'humidité et la température augmentent l'appétence de l'aliment. Par conséquent, il est préférable de donner un aliment humide à température ambiante ou légèrement réchauffé lors d'une affection gastrique.

# 10.3.3 Taille des repas et vitesse de prise alimentaire

Une taille de repas élevée et ingérée en une fois diminue la vitesse de rétention gastrique<sup>47</sup>. Ainsi, la taille des repas est un élément essentiel pour limiter le temps de rétention gastrique. Il est préférable de donner plusieurs petits repas qu'un seul grand. Cependant, il semble que la granulométrie de l'aliment n'ait pas d'effet sur les temps de rétention, chez un individu sain<sup>52</sup>.

Dans le cadre d'un risque élevé de SDTE, les principales mesures à prendre sont diététiques pour diminuer les facteurs de risques présentés dans la section 10.2.3. Ainsi, il est nécessaire de diminuer la quantité d'aliments ingérée par repas en multipliant le nombre de repas, en ne surélevant pas la gamelle, en ralentissant la prise alimentaire du chien avec une gamelle "anti-glouton", le cas échéant, en isolant le chien de ses congénères lors du repas et en augmentant si possible la taille des

croquettes de l'animal. Une activité modérée et contrôlée (marche en laisse) postprandiale pourrait être bénéfique<sup>34</sup>. Cependant, les activités intenses devraient être évitées de 1h avant le repas jusqu'à 3h après et le chien devrait être surveillé dans les 2 heures suivant le repas.

## 10.3.4 Densité énergétique

Du fait des nombreux vomissements lors de gastrite, il est intéressant d'augmenter la densité énergétique de l'aliment afin de couvrir le besoin énergétique avec la plus faible volume d'aliments. De plus, cela permet aussi de réduire le temps de vidange gastrique<sup>47</sup>. Cependant, la limite de cette augmentation de densité énergétique est l'utilisation des matières grasses. En effet, celles-ci ont tendance à augmenter le temps de rétention gastrique, ce point est discuté à la section 10.3.6.

De même, il est important de fournir une haute digestibilité de l'aliment pour maximiser l'apport nutritionnel du faible volume d'aliment ingéré.

#### 10.3.5 Protéines

Les protéines, ou plus précisément les acides aminés, stimulent la sécrétion de gastrine<sup>53</sup>, ce qui aboutit à une baisse du pH gastrique<sup>54</sup>. Par conséquent lors de gastrite, il est conseillé de limiter l'apport en protéine afin de moduler l'acidité gastrique et permettre une cicatrisation des lésions.

Du fait de la facilitation du passage des antigènes alimentaires à travers les membranes du tube digestif sujette à une inflammation, certains auteurs proposent d'utiliser des aliments avec une source précise de protéines lors des épisodes importants de gastrite afin de les "sacrifier"<sup>55,56</sup>, le risque que l'animal se sensibilise à ces protéines étant plus grand. Dans le même objectif d'autres proposent l'utilisation de protéines hydrolysées. Cependant, sinon ces opinions d'experts, la littérature ne supporte, ni infirme, ces préconisations. Enfin, l'hypersensibilité alimentaire est à l'origine de la pathogénie de certaines gastrites chroniques. Ainsi, dans ces cas-là, l'emploi de protéines hydrolysées ou de nouvelles protéines constitue la principale thérapeutique<sup>57</sup>.

Comme pour l'ensemble des affections nécessitant un apport limité en protéines, il est nécessaire d'apporter des protéines avec une efficacité élevée, pour compenser la faible quantité des apports : soit une haute digestibilité et une haute valeur biologique.

# 10.3.6 Matières grasses

Les matières grasses ont un effet notable sur le temps de rétention gastrique. Plus une alimentation est riche en matières grasses, plus le temps de rétention est long<sup>58-60</sup>. Il est à noter que le contrôle par l'organisme de la quantité de matières grasses présentent dans le bolus alimentaire ne se fait pas directement au niveau de l'estomac, mais au niveau du duodénum à partir des premiers éléments du bolus libérés par le pylore<sup>60</sup>.

De même, un apport plus faible en matières grasses pourrait être intéressant dans les cas de SDTE afin de diminuer le temps de rétention gastrique. Cependant, à l'heure actuelle une seule étude à mis en évidence un intérêt d'une baisse des matières grasses<sup>61</sup>, ces résultats étant en contradiction avec une autre publication du même auteur<sup>30</sup>. De l'avis de l'auteur, compte tenu de la balance bénéfice risque et de nos connaissances sur la physiologie gastrique, un apport excessif en matière grasse devrait être évité en cas de risque élevé de SDTE.

#### **10.3.7** Fibres

L'abord des fibres chez les carnivores domestiques est toujours complexe compte tenu du peu d'informations dont nous disposons sur la nature des fibres dans les aliments, notamment industriels.

Or, concernant le temps de rétention gastrique, il n'est pas influencé de la même manière selon le type de fibre utilisé. Ainsi, chez le chat, les fibres insolubles ne modifient pas le temps de rétention gastrique<sup>62</sup>. A l'inverse, les fibres solubles (psyllium, pectine...) augmentent la viscosité du bolus alimentaire, ainsi le temps de rétention dans l'estomac<sup>63-65</sup>. Enfin, même en considérant l'absence d'effet des fibres insolubles sur la vidange gastrique, il n'est pas conseillé d'en apporter outres mesure. En effet, les fibres diminuent globalement la digestibilité de l'aliment ainsi que sa densité énergétique.

# 10.4 Aliments commerciaux

Les aliments dits "gastro-intestinaux" peuvent correspondre à plusieurs objectifs nutritionnels particuliers, le plus couramment employé est : "Compensation de la maldigestion". Cet ONP demande à ce que l'aliment ait une haute digestibilité et une faible teneur en matières grasses, sans que la directive définisse une norme précise pour ces deux éléments. Ce large champ permet d'obtenir une grande diversité dans les produits ayant cet ONP.

Concernant les aliments à destination du chat, leur densité énergétique est plus importante que celle des aliments physiologiques et cela de façon homogène. Alors que pour le chien, les produits avec l'ONP ont des densités énergétiques dans l'intervalle de celles des aliments physiologie. La figure 10.1 présente la densité énergétique des aliments "gastro-intestinaux" du chien et du chat. Ces produits se distinguent dans la façon de couvrir cette énergie (figure 10.3). Le vétérinaire doit alors apporter une attention particulière à l'aliment qu'il choisit en fonction de ses objectifs pour l'animal qu'il traite. Par rapport, aux aliments physiologiques les aliments gastro-intestinaux du chien sont plutôt moins riches en protéines (à quelques exceptions) et moins riche en matières grasses alors que ceux du sont plus riche en matières grasses (figure 10.2. On remarque que ces aliments ont tendance à avoir une faible teneur en cellulose brute ce qui confirme la volonté de fournir des aliments hautement digestibles et denses d'un point de vu énergétique malgré un apport modéré en matières grasses, chez le chien.

Pour tenir compte des pertes d'électrolytes par vomissements et diarrhées, les aliment avec ONP sont, en général, plus riches que les aliments physiologiques du chien et du chat et sodium et potassium( figure 10.4)

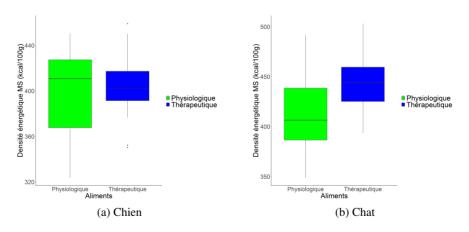



FIGURE 10.1: Densité énergétiques sur la matière sèche des aliments avec une indication gastrointestinalle à destination du chien et du chat, par rapport aux aliments physiologiques des marques vétérinaires.

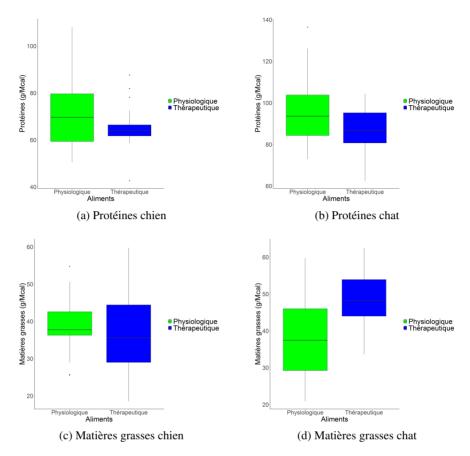



FIGURE 10.2: Apport en Protéines et Matières grasses des aliments avec une indication gastrointestinalle à destination du chien et du chat, par rapport aux aliments physiologiques des marques vétérinaires.

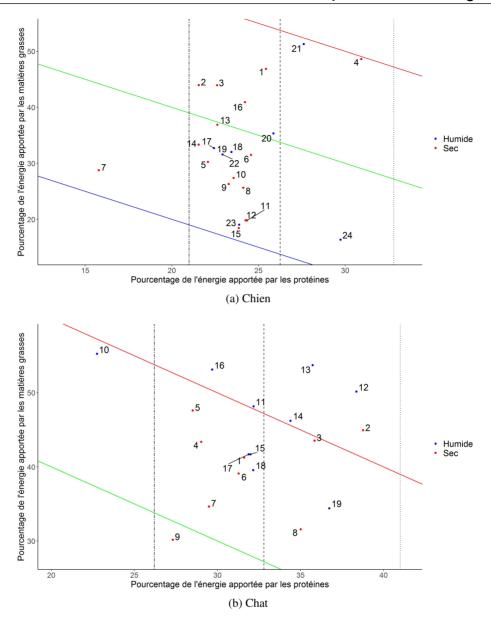



FIGURE 10.3: Source de l'énergie des aliments avec une indication gastro-intestinalle à destination du chien et du chat. Les droites diagonales correspondent à un pourcentage de l'énergie apporté par l'ENA. La première ligne pointillée verticale correspond à RPC d'environ 60 g/Mcal pour le chien et 75g/Mcal pour le chat, chaque autre ligne sur la droite augmente le RPC de 25% par rapport à la précédente.

Conclusion 159

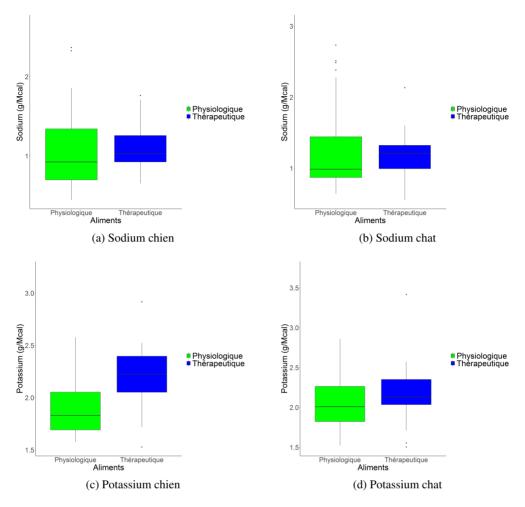



FIGURE 10.4: Apport en Sodium et Potassium des aliments avec une indication gastro-intestinale à destination du chien et du chat, par rapport aux aliments physiologiques des marques vétérinaires.

Enfin, considérant la SDTE, en plus de l'aliment, il est surtout essentiel de mettre en place des mesures diététiques pour l'accompagnement de l'animal et pour minimiser les risques de torsion.

# 10.5 Conclusion

Encore de nos jours l'approche nutritionnelle des affections gastriques reste peu étudiée. Une grande partie de cette approche est fondée sur les résultats expérimentaux de l'étude de la physiologie digestive et non sur des études sur animaux malades. De plus, il est nécessaire de bien prendre en compte les différentes approches, médicales, diététiques et nutritionnelles pour maximiser les chances de succès.

# 10.6 Exercices

Exercice 10.1 Jester est un Braquador (croisement de braque allemand et de labrador) mâle castré de 3 ans, pesant 29kg (NEC 3/5). Il vit avec un autre chien, a un accès à l'extérieur et effectue en moyenne 3h d'activité par jour. Il présente une dysplasie des hanches qui a conduit au développement d'arthrose.

Sa ration journalière actuelle se compose de 375g de Royal Canin Neutered adult large Dog. Jester est nourri en une fois en présence de son congénère, il se jette sur sa gamelle (temps d'ingestion 17 s). Dans l'heure qui suit, son flanc gauche triple de volume, il exprime une gêne, refuse de se coucher, éructe de nombreuses fois et présente des flatulences. Au moins deux fois par semaine, Jester présente des vomissements.

Des examens échographiques et sanguins ont été réalisés sans mettre en évidence d'anomalie. Analyser la ration et la conduite alimentaire actuelle. Proposer en la justifiant une approche nutritionnelle et diététique pour Jester.

#### 10.7 Références

- [1] Nora BERGHOFF et al. "Gastroenteropathy in Norwegian Lundehunds". In: *Compend Contin Educ Vet* 29.8 (août 2007), 456-465, 468-470, quiz 470-471. ISSN: 1940-8307. pmid: 17849700 (cf. page 152).
- [2] Teresa D. OBR et al. "Necroulcerative Hemorrhagic Gastritis in a Cat Secondary to the Administration of 3% Hydrogen Peroxide as an Emetic Agent". In: *Journal of Veterinary Emergency and Critical Care* 27.5 (2017), pages 605-608. ISSN: 1476-4431. DOI: 10.1111/vec.12639 (cf. page 152).
- [3] A. K. HENDERSON et C. R. L. WEBSTER. "Disruption of the Gastric Muscosal Barrier in Dogs". In: Compendium on continuing education for the practicing veterinarian (2006). ISSN: 0193-1903. URL: http://agris.fao.org/agris-search/search.do?recordID=US201301079158 (visité le 08/02/2020) (cf. page 152).
- [4] R. NEIGER, F. GASCHEN et A. JAGGY. "Gastric Mucosal Lesions in Dogs with Acute Intervertebral Disc Disease: Characterization and Effects of Omeprazole or Misoprostol". In: *J. Vet. Intern. Med.* 14.1 (2000 Jan-Feb), pages 33-36. ISSN: 0891-6640. DOI: 10.1892/0891-6640 (2000)014<0033: gmlidw>2.3.co; 2. pmid: 10668814 (cf. page 152).
- [5] René MENGUY et Y. F. MASTERS. "Effect of Cortisone on Mucoprotein Secretion by Gastric Antrum of Dogs: Pathogenesis of Steroid Ulcer". In: Surgery 54.1 (1er juil. 1963), pages 19-28. ISSN: 0039-6060, 1532-7361. DOI: 10.5555/uri: pii: 0039606063901867. pmid: 13934855 (cf. page 152).
- [6] Marylynn E. STANTON et Ronald M. BRIGHT. "Gastroduodenal Ulceration in Dogs". In: *Journal of Veterinary Internal Medicine* 3.4 (1989), pages 238-244. ISSN: 1939-1676. DOI: 10.1111/j.1939-1676.1989.tb00863.x (cf. page 152).
- [7] Rachel M. Peters et al. "Histopathologic Features of Canine Uremic Gastropathy: A Retrospective Study". In: *J. Vet. Intern. Med.* 19.3 (2005 May-Jun), pages 315-320. ISSN: 0891-6640. DOI: 10.1892/0891-6640(2005)19[315:hfocug]2.0.co; 2. pmid: 15954544 (cf. page 152).

[8] S.M. McLeland et al. "Relationship among Serum Creatinine, Serum Gastrin, Calciumphosphorus Product, and Uremic Gastropathy in Cats with Chronic Kidney Disease". In: *J Vet Intern Med* 28.3 (2014), pages 827-837. ISSN: 0891-6640. DOI: 10.1111/jvim.12342. pmid: 24628683 (cf. page 152).

- [9] M. K. TOLBERT et al. "Evaluation of Gastric pH and Serum Gastrin Concentrations in Cats with Chronic Kidney Disease". In: *Journal of Veterinary Internal Medicine* 31.5 (2017), pages 1414-1419. ISSN: 1939-1676. DOI: 10.1111/jvim.14807 (cf. page 152).
- [10] MURIEL MARION et al. "Link between Chronic Gastric Disease and Anxiety in Dogs". In: *Proceedings of the 11th International Veterinary Behaviour Meeting*. Tome 45. CABI, 2017, page 28 (cf. page 152).
- [11] M. S. DAVIS et al. "Efficacy of Omeprazole for the Prevention of Exercise-Induced Gastritis in Racing Alaskan Sled Dogs". In: *Journal of Veterinary Internal Medicine* 17.2 (2003), pages 163-166. ISSN: 1939-1676. DOI: 10.1111/j.1939-1676.2003.tb02428.x (cf. page 152).
- [12] Michael S. DAVIS et Katherine K. WILLIAMSON. "Gastritis and Gastric Ulcers in Working Dogs". In: Front. Vet. Sci. 3 (2016). ISSN: 2297-1769. DOI: 10.3389/fvets.2016.00030 (cf. pages 152, 153).
- [13] Michelle M. DENNIS et al. "Assessment of Necropsy Findings in Sled Dogs That Died during Iditarod Trail Sled Dog Races: 23 Cases (1994–2006)". In: *Journal of the American Veterinary Medical Association* 232.4 (15 fév. 2008), pages 564-573. ISSN: 0003-1488. DOI: 10.2460/javma.232.4.564 (cf. page 152).
- [14] M. S. DAVIS et al. "Prevalence of Gastric Lesions in Racing Alaskan Sled Dogs". In: Journal of Veterinary Internal Medicine 17.3 (2003), pages 311-314. ISSN: 1939-1676. DOI: 10.1111/j.1939-1676.2003.tb02453.x (cf. page 152).
- [15] Christopher M. ROYER et al. "Exercise Stress, Intestinal Permeability and Gastric Ulceration in Racing Alaskan Sled Dogs". In: *Equine and Comparative Exercise Physiology* 2.1 (fév. 2005), pages 53-59. ISSN: 1479-070X, 1478-0615. DOI: 10.1079/ECP200446 (cf. pages 152, 153).
- [16] Michael S. DAVIS et al. "Sustained Strenuous Exercise Increases Intestinal Permeability in Racing Alaskan Sled Dogs". In: *J. Vet. Intern. Med.* 19.1 (2005 Jan-Feb), pages 34-39. ISSN: 0891-6640. DOI: 10.1892/0891-6640(2005)19<34:sseiip>2.0.co; 2. pmid: 15715045 (cf. page 153).
- [17] Michael DAVIS et al. "Temporal Relationship between Gastrointestinal Protein Loss, Gastric Ulceration or Erosion, and Strenuous Exercise in Racing Alaskan Sled Dogs". In: *J. Vet. Intern. Med.* 20.4 (2006 Jul-Aug), pages 835-839. ISSN: 0891-6640. DOI: 10.1892/0891-6640 (2006) 20 [835:trbgpl] 2.0.co; 2. pmid: 16955805 (cf. page 153).
- [18] G. BANFI et al. "Pepsinogens and Gastrointestinal Symptoms in Mountain Marathon Runners". In: *Int J Sports Med* 17.8 (nov. 1996), pages 554-558. ISSN: 0172-4622. DOI: 10.1055/s-2007-972894. pmid: 8973974 (cf. page 153).
- [19] M. FURR, L. TAYLOR et D. KRONFELD. "The Effects of Exercise Training on Serum Gastrin Responses in the Horse". In: *Cornell Vet* 84.1 (jan. 1994), pages 41-45. ISSN: 0010-8901. pmid: 8313707 (cf. page 153).

- [20] A. A. Twaddle B. V. Sc (Syd) M.R.C.V.S. "Pyloric Stenosis in Three Cats and Its Correction by Pyloroplasty". In: *New Zealand Veterinary Journal* 18.1-2 (1<sup>er</sup> jan. 1970), pages 15-17. ISSN: 0048-0169. DOI: 10.1080/00480169.1970.33849. pmid: 5266504 (cf. page 153).
- [21] Jason A. SYRCLE, Jennifer M. GAMBINO et William W. KIMBERLIN. "Treatment of Pyloric Stenosis in a Cat via Pylorectomy and Gastroduodenostomy (Billroth I Procedure)". In: *Journal of the American Veterinary Medical Association* 242.6 (27 fév. 2013), pages 792-797. ISSN: 0003-1488. DOI: 10.2460/javma.242.6.792 (cf. page 153).
- [22] C. M. PONCET et al. "Prevalence of Gastrointestinal Tract Lesions in 73 Brachycephalic Dogs with Upper Respiratory Syndrome". In: *Journal of Small Animal Practice* 46.6 (2005), pages 273-279. ISSN: 1748-5827. DOI: 10.1111/j.1748-5827.2005.tb00320.x (cf. page 153).
- [23] P LECOINDRE et S RICHARD. "Digestive Disorders Associated with the Chronic Obstructive Respiratory Syndrome of Brachycephalic Dogs: 30 Cases (1999-2001)". In: *Revue Méd. Vét.* (2004), page 6 (cf. page 153).
- [24] C. M. PONCET et al. "Long-Term Results of Upper Respiratory Syndrome Surgery and Gastrointestinal Tract Medical Treatment in 51 Brachycephalic Dogs". In: *Journal of Small Animal Practice* 47.3 (2006), pages 137-142. ISSN: 1748-5827. DOI: 10.1111/j.1748-5827.2006.00057.x (cf. page 153).
- [25] Tali BUBER et al. "Evaluation of Lidocaine Treatment and Risk Factors for Death Associated with Gastric Dilatation and Volvulus in Dogs: 112 Cases (1997-2005)". In: *J. Am. Vet. Med. Assoc.* 230.9 (1<sup>er</sup> mai 2007), pages 1334-1339. ISSN: 0003-1488. DOI: 10.2460/javma. 230.9.1334. pmid: 17472559 (cf. page 153).
- [26] Eric MONNET. "Gastric Dilatation-Volvulus Syndrome in Dogs". In: *Veterinary Clinics: Small Animal Practice* 33.5 (1<sup>er</sup> sept. 2003), pages 987-1005. ISSN: 0195-5616, 1878-1306. DOI: 10.1016/S0195-5616(03)00059-7. pmid: 14552158 (cf. page 153).
- [27] John R. HERBOLD et al. "Relationship between Incidence of Gastric Dilatation-Volvulus and Biometeorologic Events in a Population of Military Working Dogs". In: *American Journal of Veterinary Research* 63.1 (1er jan. 2002), pages 47-52. ISSN: 0002-9645. DOI: 10.2460/AJVR.2002.63.47 (cf. page 153).
- [28] Michael A. HARKEY et al. "Associations between Gastric Dilatation-Volvulus in Great Danes and Specific Alleles of the Canine Immune-System Genes DLA88, DRB1, and TLR5". In: *American Journal of Veterinary Research* 78.8 (24 juil. 2017), pages 934-945. ISSN: 0002-9645. DOI: 10.2460/ajvr.78.8.934 (cf. page 153).
- [29] Meredith A. J. HULLAR et al. "The Canine Gut Microbiome Is Associated with Higher Risk of Gastric Dilatation-Volvulus and High Risk Genetic Variants of the Immune System". In: *PLoS One* 13.6 (11 juin 2018). ISSN: 1932-6203. DOI: 10.1371/journal.pone.0197686. pmid: 29889838 (cf. page 153).
- [30] Malathi RAGHAVAN et al. "Diet-Related Risk Factors for Gastric Dilatation-Volvulus in Dogs of High-Risk Breeds". In: *Journal of the American Animal Hospital Association* 40.3 (1<sup>er</sup> mai 2004), pages 192-203. ISSN: 0587-2871. DOI: 10.5326/0400192 (cf. pages 153, 155).

[31] Lt GLICKMAN et al. "Multiple Risk Factors for the Gastric Dilatation-Volvulus Syndrome in Dogs: A Practitioner/Owner Case-Control Study". In: *Journal of the American Animal Hospital Association* 33.3 (1<sup>er</sup> mai 1997), pages 197-204. ISSN: 0587-2871. DOI: 10.5326/15473317-33-3-197 (cf. page 153).

- [32] L. F. H. THEYSE, W. E. van de BROM et F. J. van SLUIJS. "Small Size of Food Particles and Age as Risk Factors for Gastric Dilatation Volvulus in Great Danes". In: *Veterinary Record* 143.2 (11 juil. 1998), pages 48-50. ISSN: 0042-4900, 2042-7670. DOI: 10.1136/vr.143.2. 48. pmid: 9699253 (cf. page 153).
- [33] Anna de BATTISTI, Michael J. TOSCANO et Luca FORMAGGINI. "Gastric Foreign Body as a Risk Factor for Gastric Dilatation and Volvulus in Dogs". In: *Journal of the American Veterinary Medical Association* 241.9 (18 oct. 2012), pages 1190-1193. ISSN: 0003-1488. DOI: 10.2460/javma.241.9.1190 (cf. page 153).
- [34] Marko PIPAN et al. "An Internet-Based Survey of Risk Factors for Surgical Gastric Dilatation-Volvulus in Dogs". In: *Journal of the American Veterinary Medical Association* 240.12 (1er juin 2012), pages 1456-1462. ISSN: 0003-1488. DOI: 10.2460/javma.240.12.1456 (cf. pages 153, 155).
- [35] Lawrence T. GLICKMAN et al. "Non-Dietary Risk Factors for Gastric Dilatation-Volvulus in Large and Giant Breed Dogs". In: *Journal of the American Veterinary Medical Association* 217.10 (1<sup>er</sup> nov. 2000), pages 1492-1499. ISSN: 0003-1488. DOI: 10.2460/javma.2000. 217.1492 (cf. page 153).
- [36] R. H. SCHAIBLE et al. "Predisposition to Gastric Dilatation-Volvulus in Relation to Genetics of Thoracic Conformation in Irish Setters". In: *J Am Anim Hosp Assoc* 33.5 (1997 Sep-Oct), pages 379-383. ISSN: 0587-2871. DOI: 10.5326/15473317-33-5-379. pmid: 9278112 (cf. page 153).
- [37] D SCHELLENBERG et al. "Influence of Thoracic Conformation and Genetics on the Risk of Gastric Dilatation-Volvulus in Irish Setters". In: *Journal of the American Animal Hospital Association* 34.1 (1<sup>er</sup> jan. 1998), pages 64-73. ISSN: 0587-2871. DOI: 10.5326/15473317-34-1-64 (cf. page 153).
- [38] Linda P. CASE et al. "Chapter 35 Nutritional Management of Gastrointestinal Disease". In: Canine and Feline Nutrition (THIRD EDITION). Saint Louis: Mosby, 2011, pages 455-478. ISBN: 978-0-323-06619-8. URL: http://www.sciencedirect.com/science/article/pii/B9780323066198100350 (visité le 06/12/2016) (cf. page 154).
- [39] Xavier HÉBUTERNE et Geoffroy VANBIERVLIET. "Feeding the Patients with Upper Gastrointestinal Bleeding". In: *Current Opinion in Clinical Nutrition and Metabolic Care* 14.2 (mar. 2011), pages 197-201. ISSN: 1363-1950. DOI: 10.1097/MCO.0b013e3283436dc5. pmid: 21252654 (cf. page 154).
- [40] Shuang-Hong Luo et al. "Fasting for Haemostasis in Children with Gastrointestinal Bleeding". In: *Cochrane Database Syst Rev* 5 (19 mai 2016), page CD010714. ISSN: 1469-493X. DOI: 10.1002/14651858.CD010714.pub2.pmid: 27197069 (cf. page 154).
- [41] K. E. HALL et al. "Effect of Pancreatic Polypeptide on Canine Migrating Motor Complex and Plasma Motilin". In: *American Journal of Physiology-Gastrointestinal and Liver Physiology* 245.2 (1<sup>er</sup> août 1983), G178-G185. ISSN: 0193-1857. DOI: 10.1152/ajpgi.1983.245.2. G178 (cf. page 154).

- [42] Carlos DEFILIPPI. "Canine Small Bowel Motor Activity in Response to Intraduodenal Infusion of Nutrient Mixtures of Increasing Caloric Load in Dogs". In: *Dig. Dis. Sci.* 48.8 (août 2003), pages 1482-1486. ISSN: 0163-2116. DOI: 10.1023/a:1024799303676. pmid: 12924640 (cf. page 154).
- [43] Trevor A. WINTER. "The Effects of Undernutrition and Refeeding on Metabolism and Digestive Function". In: *Current Opinion in Clinical Nutrition & Metabolic Care* 9.5 (sept. 2006), pages 596-602. ISSN: 1363-1950. DOI: 10.1097/01.mco.0000241670.24923.5b (cf. page 154).
- [44] Thomas R. ZIEGLER et al. "Trophic and Cytoprotective Nutrition for Intestinal Adaptation, Mucosal Repair, and Barrier Function". In: *Annual Review of Nutrition* 23.1 (2003), pages 229-261. DOI: 10.1146/annurev.nutr.23.011702.073036. pmid: 12626687 (cf. page 154).
- [45] Albert J. MOHR et al. "Effect of Early Enteral Nutrition on Intestinal Permeability, Intestinal Protein Loss, and Outcome in Dogs with Severe Parvoviral Enteritis". In: *J. Vet. Intern. Med.* 17.6 (2003 Nov-Dec), pages 791-798. ISSN: 0891-6640. DOI: 10.1111/j.1939-1676.2003.tb02516.x.pmid: 14658714 (cf. page 154).
- [46] K. WILL, I. NOLTE et J. ZENTEK. "Early Enteral Nutrition in Young Dogs Suffering from Haemorrhagic Gastroenteritis". In: *J Vet Med A Physiol Pathol Clin Med* 52.7 (sept. 2005), pages 371-376. ISSN: 0931-184X. DOI: 10.1111/j.1439-0442.2005.00745.x. pmid: 16109106 (cf. page 154).
- [47] J. M. GOGGIN et al. "Scintigraphic Assessment of Gastric Emptying of Canned and Dry Diets in Healthy Cats". In: *Am. J. Vet. Res.* 59.4 (avr. 1998), pages 388-392. ISSN: 0002-9645. pmid: 9563617 (cf. pages 154, 155).
- [48] A. Hall JEAN et J. Washabau ROBERT. "Diagnosis and Treatment of Gastric Motility Disorders". In: *Veterinary Clinics of North America: Small Animal Practice* 29.2 (1er mar. 1999), pages 377-395. ISSN: 0195-5616. DOI: 10.1016/S0195-5616(99)50027-2 (cf. page 154).
- [49] B. C. TEETER et P. BASS. "Gastric Emptying of Liquid Test Meals of Various Temperatures in the Dog". In: *Proc. Soc. Exp. Biol. Med.* 169.4 (avr. 1982), pages 527-531. ISSN: 0037-9727. DOI: 10.3181/00379727-169-41384. pmid: 7071064 (cf. page 154).
- [50] W. M. Sun et al. "Effect of Meal Temperature on Gastric Emptying of Liquids in Man". In: *Gut* 29.3 (mar. 1988), pages 302-305. ISSN: 0017-5749. DOI: 10.1136/gut.29.3.302. pmid: 3356361 (cf. page 154).
- [51] Yuko MISHIMA et al. "Gastric Emptying of Liquid and Solid Meals at Various Temperatures: Effect of Meal Temperature for Gastric Emptying". In: *J. Gastroenterol.* 44.5 (2009), pages 412-418. ISSN: 0944-1174. DOI: 10.1007/s00535-009-0022-1. pmid: 19308311 (cf. page 154).
- [52] A. De CUYPER et al. "How Does Dietary Particle Size Affect Carnivore Gastrointestinal Transit: A Dog Model". In: *Journal of Animal Physiology and Animal Nutrition* 102.2 (2018), e615-e622. ISSN: 1439-0396. DOI: 10.1111/jpn.12803 (cf. page 154).
- [53] J. DELVALLE et T. YAMADA. "Amino Acids and Amines Stimulate Gastrin Release from Canine Antral G-Cells via Different Pathways". In: *J. Clin. Invest.* 85.1 (jan. 1990), pages 139-143. ISSN: 0021-9738. DOI: 10.1172/JCI114404. pmid: 1688566 (cf. page 155).

[54] E. J. FELDMAN et M. I. GROSSMAN. "Liver Extract and Its Free Amino Acids Equally Stimulate Gastric Acid Secretion". In: *American Journal of Physiology-Gastrointestinal and Liver Physiology* 239.6 (1er déc. 1980), G493-G496. ISSN: 0193-1857. DOI: 10.1152/ajpgi.1980.239.6.G493 (cf. page 155).

- [55] Seidman EG. "Nutritional Management of Inflammatory Bowel Disease." In: Gastroenterol Clin North Am 18.1 (1er mar. 1989), pages 129-155. ISSN: 0889-8553, 1558-1942. pmid: 2493426. URL: https://europepmc.org/article/med/2493426 (visité le 11/02/2020) (cf. page 155).
- [56] Deb ZORAN. "Nutritional Management of Gastrointestinal Disease". In: *Clinical Techniques in Small Animal Practice*. Diagnosis and Management of Gastrointestinal, Hepatic, and Pancreatic Disease 18.4 (1er nov. 2003), pages 211-217. ISSN: 1096-2867. DOI: 10.1016/S1096-2867 (03)00074-4 (cf. page 155).
- [57] C. M. ELWOOD, H. C. RUTGERS et R. M. BATT. "Gastroscopic Food Sensitivity Testing in 17 Dogs". In: *Journal of Small Animal Practice* 35.4 (1994), pages 199-203. ISSN: 1748-5827. DOI: 10.1111/j.1748-5827.1994.tb01689.x (cf. page 155).
- [58] J. H. MEYER et al. "Control of Canine Gastric Emptying of Fat by Lipolytic Products". In: *Am. J. Physiol.* 266 (6 Pt 1 juin 1994), G1017-1035. ISSN: 0002-9513. DOI: 10.1152/ajpgi.1994.266.6.G1017. pmid: 8023935 (cf. page 155).
- [59] H. C. LIN et al. "Inhibition of Gastric Emptying by Sodium Oleate Depends on Length of Intestine Exposed to Nutrient". In: *Am. J. Physiol.* 259 (6 Pt 1 déc. 1990), G1031-1036. ISSN: 0002-9513. DOI: 10.1152/ajpgi.1990.259.6.G1031. pmid: 2260658 (cf. page 155).
- [60] R. HEDDLE et al. "Motor Mechanisms Associated with Slowing of the Gastric Emptying of a Solid Meal by an Intraduodenal Lipid Infusion". In: *J. Gastroenterol. Hepatol.* 4.5 (1989 Sep-Oct), pages 437-447. ISSN: 0815-9319. DOI: 10.1111/j.1440-1746.1989.tb01741.x. pmid: 2491209 (cf. page 155).
- [61] Malathi RAGHAVAN, Nita W. GLICKMAN et Lawrence T. GLICKMAN. "The Effect of Ingredients in Dry Dog Foods on the Risk of Gastric Dilatation-Volvulus in Dogs". In: *Journal of the American Animal Hospital Association* 42.1 (1<sup>er</sup> jan. 2006), pages 28-36. ISSN: 0587-2871. DOI: 10.5326/0420028 (cf. page 155).
- [62] L. J. ARMBRUST et al. "Gastric Emptying in Cats Using Foods Varying in Fiber Content and Kibble Shapes". In: *Veterinary Radiology & Ultrasound* 44.3 (2003), pages 339-343. ISSN: 1740-8261. DOI: 10.1111/j.1740-8261.2003.tb00466.x (cf. page 156).
- [63] J. PRÖVE et H. J. EHRLEIN. "Motor Function of Gastric Antrum and Pylorus for Evacuation of Low and High Viscosity Meals in Dogs". In: *Gut* 23.2 (fév. 1982), pages 150-156. ISSN: 0017-5749. DOI: 10.1136/gut.23.2.150. pmid: 7068038 (cf. page 156).
- [64] J. RUSSELL et P. BASS. "Canine Gastric Emptying of Fiber Meals: Influence of Meal Viscosity and Antroduodenal Motility". In: *Am. J. Physiol.* 249 (6 Pt 1 déc. 1985), G662-667. ISSN: 0002-9513. DOI: 10.1152/ajpgi.1985.249.6.G662. pmid: 3002182 (cf. page 156).
- [65] D. M. BURGER et al. "Long-Term Measurement of Gastric Motility Using Passive Telemetry and Effect of Guar and Cellulose as Food Additives in Dogs". In: *J Vet Med A Physiol Pathol Clin Med* 53.2 (mar. 2006), pages 85-96. ISSN: 0931-184X. DOI: 10.1111/j.1439-0442.2006.00788.x. pmid: 16466462 (cf. page 156).



Sébastien Lefebvre

#### 11.1 Introduction

L'intestin et le colon constituent, certainement, les organes les plus sensibles aux perturbations de l'équilibre fragile qui leur permet de fonctionner. Ils doivent, à la fois, permettre le passage des nutriments tout en empêchant celui de substances indésirables comme les antigènes. Assurer une immunité contre le microbiote sans réagir outre mesure en absence de brèche de la paroi digestive, et cela, tout en maintenant un microbiote "sain" et en empêchant l'installation de bactéries pathogènes. Cet équilibre est d'autant plus difficile à maintenir, que les aliments peuvent changer couramment, que ce soit en qualité ou en quantité.

Si le symptôme d'appel d'une gastrite est la présence de vomissement, celui d'une affection intestinale est la présence de diarrhées. Il est important de se rappeler, notamment pour le recueil des commémoratifs, qu'une diarrhée est une augmentation de la fréquence, du volume ou une baisse de la consistance des selles<sup>1</sup>. C'est le signe d'une perte de certaines fonctions intestinales comme l'absorption des nutriments ou la régulation de l'eau présente dans les selles. Cependant, ce n'est ni un signe pathognomonique, les insuffisances pancréatiques pouvant, par exemple, aussi conduire à l'apparition de diarrhée, ni un signe clinique toujours présent lors d'entéropathies. Les enthéropathies se manifestent aussi souvent par la présence d'autres signes cliniques comme des vomissements, des borborygmes, de l'hyporéxie, des pertes de poids ou encore des nausées<sup>2</sup>.

Si ces symptômes permettent de suspecter une entéropathie ou une colite, il est essentiel d'en diagnostiquer l'origine. En effet, le traitement et l'accompagnement alimentaire dépendront de l'origine primaire ou secondaire et de l'étiologie (si elle est identifiée) de l'affection. De plus, dans de nombreux cas d'entéropathies chroniques, l'alimentation est un élément du diagnostic et de la caractérisation de la maladie<sup>3,4</sup>.

Ce chapitre traitera principalement des gastro-entéropathies aigües, des entéropathies chroniques et des colites. En filigrane seront aussi abordés les cas de constipation et de flatulences.

# 11.2 Éléments généraux

## 11.2.1 Gastroentérites et entérites aigües

Les gastroentérites et entérites aigües sont le plus souvent d'origine infectieuse (viral ou bactérienne) ou font suite à l'ingestion de toxines bactériennes ou surviennent en conséquence à une indiscrétion alimentaire.

Les sujets les plus sensibles et ayant le plus de risque de développer ce type d'affection sont les jeunes<sup>5,6</sup>. On citera notamment la parvovirose. De plus, il est remarquable que certaines races ont été identifiées comme pouvant être plus à même de développer une infection intestinale<sup>7</sup>.

Du fait de la composante infectieuse de nombreuses gastroentérites aigües, les principaux facteurs de risques sont environnementaux. Ainsi, des conditions d'élevage ou d'entretien des animaux facilitant la transmission des pathogènes (densité des animaux, hygiènes des locaux, absence de mesures d'introduction de nouveaux animaux...) sont des facteurs de risques importants de gastroentérites<sup>8,9</sup>. De même, l'alimentation crue est un facteur de risque important<sup>10,11</sup>. Il est aussi à noter que les cliniques vétérinaires peuvent aussi être à l'origine de la transmission de diarrhée d'origines infectieuses<sup>12</sup>.

Enfin, certaines thérapies, comme les anti-inflammatoires stéroïdiens, ou non, et les chimiothérapies anticancéreuses, peuvent aussi être à l'origine de gastroentérites <sup>13,14</sup>.

# 11.2.2 Entéropathies chroniques

La définition des entéropathies chroniques a évolué ces dernières années<sup>2</sup>.

Le diagnostique des entéropathies chroniques se fait après exclusion des entéropathies secondaires à une affection extra-intestinale, due à une obstruction mécanique (corps étranger, intussusception), à une néoplasie intestinale, ou celles d'origine infectieuse ou parasitaire<sup>3</sup>. De plus, les symptômes de l'entéropathie doivent être présent depuis plus de 3 semaines. La caractérisation des entéropathies chroniques s'effectue par un diagnostique thérapeutique entre :

- Les diarrhées répondant à un changement alimentaire (DRCA)
- Les diarrhées répondant à une antibiothérapie (DRA)
- Les diarrhées répondant aux immunosuppresseurs (DRIS)

Même si les DRA et les DRIS nécessitent aussi une prise en charge diététique et nutritionnelle comme toutes les entéropathies. Celles qui nous intéressent plus particulièrement sont les DRCA. Les DRCA comptent pour 50 à 60 % des entéropathies chroniques<sup>4,15,16</sup>. Actuellement, la cause de la perte de tolérance envers des aliments, et qui conduirait à une entéropathie, est mal établie. Elle est certainement multifactorielle et fait intervenir des facteurs génétiques, environnementaux et immunitaires. Parmi les hypothèses avancées, on peut noter, entre autres, une sensibilisation de l'animal à l'aliment à la suite d'une affection parasitaire ou bactérienne<sup>17</sup>. D'autres auteurs ont mis en avant, une immunogénicité particulière des aliments commerciaux notamment du fait de leur processus de fabrication, ou une plus faible digestibilité de ces mêmes aliments par rapport aux aliments ménagers<sup>18-21</sup>. Ces hypothèses pourraient expliquer la bonne réponse des DRCA aux aliments hyperdigestibles, aux régimes d'exclusion, aux aliments hydrolysés.

#### Colites chroniques

Concernant les colites chroniques, bien que plus rares, elles touchent plus particulièrement le jeune et sont, encore plus largement que les entéropathies du grêle, classées dans les DRCA.

## 11.2.3 Entéropathies avec perte de protéines et lymphangiectasie

Les entéropathies avec pertes de protéines se définissent par des signes gastro-intestinaux chroniques dont l'ampleur aboutit à une hypoalbuminémie. Chez le chien la lymphangiectasie intestinale est l'une des causes courantes d'entéropathie avec pertes de protéines. La lynphangiectasie intestinale est une dilatation des vaisseaux lymphatiques de l'intestin. Elle est souvent accompagnée d'une perte de lymphe dans la lumière intestinale ce qui conduit à une perte de protéines et de matières grasses<sup>22</sup>. La lymphangiectasie peut être primaire (congénitale ou ...) ou secondaire à un processus aboutissant à une augmentation de la pression lymphatique intestinale (tumeur, entéropathie chronique..)

Il existe une forte prédisposition raciale des lymphangiectasies primaires ou secondaires. Les races prédisposées sont notamment :

- Yorkshire terrier<sup>23</sup>
- Caniches<sup>24</sup>
- Shar Pei<sup>24</sup>
- Basenji<sup>25</sup>
- Chien norvégien de macareux<sup>26,27</sup>
- Irish Soft Coated Wheaten Terrier<sup>28</sup>

Dans cette affection, le but de la nutrition sera quand cela est possible de diminuer au plus la pression dans les vaisseaux lymphatiques intestinaux.

# 11.3 Accompagnement nutritionnel

#### 11.3.1 Jeûne

Ce point est déjà en partie abordé dans le point 10.3.1. Bien que longtemps utilisés lors des phases aigües d'affections gastro-intestinales, les jeunes sont aujourd'hui remis en question. En effet, le tube digestif vit de la digestion, il y trouve les nutriments essentiels à son développement. Ainsi, un manque de nutrition entérale diminue la taille des villosités et augmente la perméabilité intestinale<sup>29-31</sup>. De plus, par le rôle de l'intestin sur l'immunité des muqueuses, l'absence d'alimentation luminale conduit à une baisse de l'immunité des muqueuses, y compris les muqueuses extra-digestives<sup>32-34</sup>.

Quelques publications montrent qu'un rétablissement précoce de l'alimentation entérale après des épisodes violents de gastro-entéropathie (y compris hémorragiques) améliore le pronostic et la durée d'hospitalisation<sup>35,36</sup>. Cependant, le principal effet secondaire reporté est une plus grande occurrence de vomissements<sup>36</sup>. Ainsi, pour limiter les épisodes de vomissements tout en continuant de fournir une alimentation entérale, il est conseillé de nourrir l'animal à 25% de sont besoin énergétique au repos en première intention (pour rappel BER= 70\*Poids<sup>0.75</sup> pour le chien et le chat).

# 11.3.2 Digestibilité

Lors de n'importe quelle affection entérale ou du colon, l'élément essentiel à prendre en compte est la digestibilité de l'aliment. Cependant, il est important de remettre en contexte cette digestibilité. La digestibilité est un indicateur calculé chez l'animal sain. Dans le cadre d'un animal malade, le pourcentage de digestibilité de l'aliment n'a plus de sens. En effet, en cas d'affection, les mécanismes physiologiques nécessaires à une bonne digestion, et utilisés lors de la mesure de la digestibilité de

l'aliment, peuvent être atteints, ce qui rend la digestion moins efficace. Par conséquent, la digestibilité de l'aliment en cas de maladie est inférieure à celle mesurée sur des individus sains. De plus, cette baisse de la digestibilité n'est pas équivalente entre les nutriments. Ainsi, dans le cadre des affections du tube digestif, la digestibilité doit se voir comme la facilité qu'un aliment a à être digéré par un individu sain, et doit être moduler en fonction de l'affection de l'animal et de la composition de l'aliment.

Les rations ménagères, bien préparées et constituées avec des ingrédients hautement digestibles, sont aussi souvent utilisées avec succès dans les DRCA, que celles-ci aient pour origine le colon ou l'intestin grêle. Ce succès peut s'expliquer, en partie, par leur plus grande digestibilité comparativement aux produits commerciaux<sup>20,21,37</sup>. Cette différence trouve en partie son origine dans les interactions glucides-protéines (réactions de Maillard) pouvant intervenir au cours du processus de fabrication des aliments et ayant un effet néfaste sur la digestibilité, notamment celle des protéines<sup>38,39</sup>. L'importance de ces réactions dépendant, bien sûr, du fabricant. Cependant, dans le cas des rations ménagères, il est important de bien préparer la ration pour assurer une bonne digestibilité. Ainsi, en plus des recommandations habituelles concernant la préparation de la ration ménagère, il est conseillé de faire bouillir la viande, plutôt que de la faire poêler, griller ou rôtir. En effet, c'est la cuisson a l'eau est celle qui permet la meilleure digestibilité des acides aminés<sup>40</sup>.

La digestibilité définit la quantité du bolus alimentaire non digéré par l'animal et par conséquent le volume des selles ainsi que leur teneur en eau. En effet, de nombreux éléments non digérés ont une activité osmotique et participent à un "appel d'eau". Ainsi, dans l'ensemble des affections du tube digestif, il est important d'employer des aliments qui, au regard de l'affection, sont les plus digestibles possible. Dans le cadre des affections aiguës, l'alimentation avec un aliment à forte digestibilité devrait être continuée quelques semaines après la résolution des symptômes afin d'aider au bon rétablissement de la fonction digestive.

Enfin, la digestibilité des aliments est un élément essentiel dans la prise en charge des colites. En effet, c'est celle-ci qui définit les nutriments accessibles au microbiote du colon, ce qui, à terme, définit la composition de ce microbiote, son équilibre et ses métabolites. Ainsi, une alimentation avec ne haute digestibilité iléale et avec un apport contrôlé en molécule fermentescible dans le colon est conseillé.

L'emploi d'aliment hautement digestible et leur efficacité dans le cadre d'entéropathie chronique a été décrite dans plusieurs articles<sup>41-44</sup>, un seul article, de faible qualité, concerne les colites chroniques<sup>45</sup>. Cependant, tous les aliments de la suite de ce cours peuvent être considérés comme hautement digestibles, en raison de leurs autres qualités, ils n'ont pas été ajoutés dans cette section.

#### 11.3.3 Protéines

Les protéines sont un nutriment essentiel pour le tube digestif, le microbiote et l'animal. Cependant, ce nutriment est aussi potentiellement une source d'antigène contre laquelle l'hôte peut réagir, s'il n'y est plus tolérant. De plus, la digestibilité des protéines est à prendre en considération lors d'affection gastro-intestinale afin de couvrir les besoins physiologiques de l'animal ainsi que de combler les pertes dues à l'affection, dans un contexte où la digestion est altérée. Mais au delà de la simple couverture des besoins, le devenir des protéines non digérées est aussi à prendre en considération. En effet, celles-ci en arrivant au niveau du colon sont fermentées par la flore microbienne présente, qui produit alors des métabolites (ammoniac, phénols, acides gras ramifiés, indoles...) ayant des effets délétères sur la santé du colon et de l'organisme<sup>46-48</sup>. De plus, la diminution des fermentations coliques des protéines a un effet bénéfique sur la qualité des selles, notamment sur les grandes races de chien<sup>47</sup>. Ainsi, dans le cadre de l'alimentation d'animaux atteins d'affections

intestinales, et d'autant plus si elles touchent le colon, l'apport en protéines hautement digestibles et en quantité modérée est conseillé pour limiter les putréfactions. De même, ces putréfactions peuvent engendrer des flatulences odorantes.

Dans le but de limiter les réactions aux aliments auxquels l'animal a été sensibilisé, dans le cas des DRCA, une des stratégies est d'employer de nouvelles sources de protéines avec lesquelles l'animal n'a pas déjà été en contact, ou, au moins, des aliments avec des sources de protéines bien identifiées pour réaliser des tests d'élimination. Cet axe nutritionnel a l'avantage d'être, comme le précédent, réalisable avec une ration ménagère. De nombreuses publications ont appuyé son efficacité dans les DRCA de l'intestin et du colon<sup>15,49-53</sup>. Cependant, et comme il en est discuté dans la section consacrées au aliment commerciaux (11.4), la crédence accordée à la marque dans le choix d'un aliment avec des sources restreintes en protéines et/ ou nouvelles est un élément essentiel. En effet, de nombreux aliments provenant de marques ne répondant pas aux critères énoncés dans la section 2.6 proposent des aliments "hypoallergéniques" et/ou avec des sources de protéines restreintes, alors que des analyses sur ces aliments ont montré que, dans la grande majorité des cas, ils étaient contaminés par d'autres ingrédients non déclarés<sup>54,55</sup>. Ces aliments de qualité inférieure fragilisent les chances de l'animal malade et l'établissement du diagnostic.

L'utilisation de protéines hydrolysées a permis d'obtenir d'excellent résultat sur le DRCA. C'est aujourd'hui l'élément ayant le plus haut niveau de preuve pour ces types d'entéropathies chronique 15,16,43,56-60. L'utilisation de protéines hydrolysées offre deux grands avantages, ce sont des protéines avec une excellente digestibilité et elles présentent peu d'antigènes<sup>61</sup>. En effet, les protéines hydrolysées sont réduites à la taille de peptides moins immunogènes que les protéines complètes, bien que cette immunogénicité soit dépendante de l'intensité de l'hydrolyse<sup>62</sup>. Bien que les peptides soient moins immunogènes que les protéines initiales, il est conseillé de choisir une alimentation à base de protéines hydrolysées provenant d'une source de protéines à laquelle l'animal n'est pas suspecté d'être sensible. Par exemple, si l'animal est nourri à base de poulet, les hydrolysas de protéines de poulet couramment utilisés en alimentation (viandes, abats) devraient être évités. En effet, des réactions immunitaires aux hydrolysas sont décrites <sup>57,63,64</sup>. Ainsi, de l'avis de l'auteur une DRCA ne devrait pas être exclue tant qu'un aliment avec ce type de protéines n'a pas été essayé. Ces aliments ont aussi des défauts majeurs, au premier rang desquels sont le prix et l'appétence. Considérant l'appétence, la littérature disponible soutient que l'appétence des aliments hydrolysés n'est pas inférieure à celle des aliments standards<sup>56,58,65</sup>. Cependant, de l'expérience de l'auteur l'appétence de ces aliments est moindre par rapport à d'autres aliments commerciaux, notamment dans des situations d'hyporexie.

Le temps conseillé sous aliments thérapeutique pour considérer qu'il a, ou non, été efficace est de 4 à 6 semaines. Cependant, dans la majorité des cas, les effets sont visibles sous deux semaines. A la suite d'un changement alimentaire ayant mené à une résolution des symptômes, une partie des animaux peuvent revenir sous leur alimentation d'origine sans retour des symptômes. Cependant compte tenu de la grande disparité de réponses à ce retour de l'aliment initial (31 à 75 % selon les études 15,43,53) et le peu d'éléments de suivi à long terme disponibles, le retour à l'alimentation originale doit se faire avec prudence et en accord avec le propriétaire.

#### Intolérance au gluten

Bien que populaire chez les propriétaires, en raison des la maladie coeliaque touchant l'humain<sup>66</sup>, les entéropathies liées au gluten sont rares chez les chiens, hormis dans certaines races comme le Setter Irlandais et le Border Terrier<sup>67-72</sup>. Dans ces rares cas la une alimentation sans gluten est recommandée.

#### **Glutamine**

La glutamine est un acide aminé conditionnel protéogène, qui peut être utilisé pour la synthèse des bases puriques. En raison de l'importance des multiplications cellulaires lors de la réparation des barrières intestinales, l'apport en glutamine est bénéfique au rétablissement de la fonction digestive à la suite d'une entéropathie<sup>29</sup>. Cependant, l'efficacité de la glutamine semble fortement dépendre de sa forme. Elle est efficace par voie entérale, mais aurait une absence d'efficacité quand elle est sous forme libre<sup>73,74</sup>.

# 11.3.4 Matières grasses

La digestion des matières grasses étant relativement complexe, notaient comparativement à celle de l'amidon (intervention de sels biliaires, de lipase pancréatique et gastrique ainsi que de colipase) et bien qu'elles apportent une forte densité énergétique, la majorité des aliments utilisés dans le cadre des entéropathies ont des teneurs modérées en matières grasses. Cependant, il semble que même malade, les chats supportent plutôt bien les rations riches en matières grasses<sup>75</sup>.

La lymphe intestinale est le principal transporteur des matières grasses par l'utilisation des lipoprotéines (chylomicron). Cependant, les triglycerides à chaines moyennes sont aussi transportés via le système porte. De façon générale, plus les triglycérides comportent d'acide gras à chaines longues, plus ils sont incorporés à la lymphe<sup>76,77</sup>. Dans le cadre des lymphangiectasies du chien, une alimentation très pauvre en matières grasses pourrait permettre de diminuer la pression dans les vaisseaux lymphatiques et ainsi améliorer la fonction intestinale. Les aliments pauvre en matières grasses ont montré une bonne efficacité dans la réduction des diarrhées consécutives à une lymphangiectasie<sup>78-82</sup>. Cependant, malgré un apport réduit en matières grasses, il est nécessaire de s'assurer que les besoins en acides gras essentiels sont couverts.

Les matières grasses ont une incidence sur les mouvements des gaz à l'intérieur du tube digestif notamment en ralentissant leur progression<sup>83,84</sup>. Ce ralentissement du transit des gaz aboutit à leur accumulation, ce qui conduit à l'apparition de borborygmes pouvant entrainer une gêne et des flatulences. Il est à noter que le transit des gaz est indépendant de celui du bolus alimentaire et que le gaz des flatulences est principalement d'origine atmosphérique et absorbé au momen du repas. De plus, les flatulences et borborygmes proviennent plus des désordres dans le mouvement des gaz à l'intérieur du tube digestif que de la quantité de gaz<sup>85</sup>. Ainsi, lors de flatulences, présentes en dehors d'autres troubles gastro-intestinaux, leur accompagnement nutritionnel se fait à partir d'une alimentation très digestible et pauvre en matières grasses<sup>19</sup>.

# 11.3.5 Fibres et probiotiques

Les fibres sont un élément fondamental de la santé intestinale. Cependant, c'est une classe de molécule hétérogène, regroupées uniquement par leur propriété de ne pas être digestibles par les enzymes des mammifères et de provenir du règne végétal. A l'intérieur des fibres alimentaires, on en retrouve des solubles ou non, fermentescibles ou pas. De plus, l'indicateur disponible sur les étiquettes des aliments commerciaux pour évaluer les fibres, la cellulose brute, ne renseigne ni sur leur quantité ni sur leur qualité. En effet, la cellulose brute ne dose qu'une partie des fibres insolubles et aucune fibres solubles. Les fibres non dosées se retrouvent dans l'extractif non azoté. De l'avis de l'auteur, les aliments de grande qualité devraient inclure dans leur clef-produit un dosage des fibres totales.

Certaines fibres peu ou pas fermentescibles peuvent avoir un intérêt mécanique, le psyllium par exemple a la capacité de retenir l'eau et de former un gel visqueux. Par ces propriétés, il permet

d'améliorer le transit des boules de poils<sup>86</sup>, et de limiter la constipation<sup>87</sup>. Cependant, l'ajout d'une quantité trop importante de fibres diminue la digestibilité de la ration<sup>88</sup>.

Les fibres fermentescibles, quant à elle, ont une action sur la flore microbienne du colon. Selon le type de fibre utilisé la population bactérienne favorisée ne sera pas la même, ni les produits de son métabolisme <sup>89,90</sup>. Ainsi, un apport équilibré et diversifié en fibre permet de maintenir une population microbienne équilibrée et diversifiée<sup>91</sup>. Parmi les produits du métabolisme bactérien, on retrouve notamment des acides gras volatils. Ceux-ci favorisent la croissance et l'homéostasie des colonocytes, ainsi que la motilité intestinale<sup>92-94</sup>. Enfin, le butyrate, un des acides gras volatils, a une action de modulateur de l'immunité, notamment au niveau du colon<sup>95</sup>. Il est important de prendre en compte qu'un ajout en fibres solubles et fermentescibles supérieur aux capacités métaboliques du microbiote conduit à une augmentation de la pression osmotique dans la lumière intestinal et à des diarrhées.

Un autre moyen de soutenir le microbiote intestinal est d'utiliser des probiotiques. Les probiotique sont, d'après l'Organisation Mondiale de la Santé, "des micro-organismes vivants qui, lorsqu'ils sont ingérés en quantité suffisante, exercent des effets positifs sur la santé, au-delà des effets nutritionnels traditionnels". Les études utilisant des probiotiques sur la prévention des diarrhées ou lors d'introduction de nouveaux animaux dans un chenil semblent prometteuses <sup>96,97</sup>. Cependant, aujourd'hui, peu de probiotiques sont autorisés en alimentation animale en Europe.

Attention, certaines bactéries anaérobies présentes dans le colon peuvent produire du méthane avec des fibres rapidement fermentescibles. Or le méthane inhibe le transit du colon et de l'intestin et peut être à l'origine de constipation. Cette production de méthane intestinale est bien décrite chez l'homme, où elle est dépendante de facteurs génétiques, socioéconomiques et augmente avec l'obésité<sup>98,99</sup>. Elle toucherait 30 à 50% des individus, mais n'a, à la connaissance de l'auteur, pas été mise en évidence chez les carnivores domestiques. Cependant, en cas de constipation suite à l'ajout de fibre fermentescible dans l'alimentation, ce point est à garder en mémoire.

L'utilisation d'aliments enrichis en fibres est surtout décrite dans les cas de colites chroniques 100-102. Les récentes études sur le microbiote, son métabolisme et comment les nutriments et fibres agissent dessus, laissent présager que de plus en plus d'aliments utiliseront des fibres fermentescibles à l'avenir.

# 11.4 Aliments commerciaux

Les aliments "gastro-intestinaux" sont déjà présentés dans la section sur les gastrites. Ici nous ne reprenons que la figure 11.1 qui présente les apport en cellulose brute et en ENA de ces aliments. On y remarque que certains aliments pour chiens sont bien plus riches que les autres en cellulose brute. Cependant, comme précisé plus haut, il faut se méfier de la cellulose brute comme indicateur.

Pour être considéré comme aliment avec une indication "intolérance alimentaire" ou au sens de la réglementation avoir l'objectif nutritionnel particulier "Réduction des intolérances à certains ingrédients et nutriments", un aliment commercial doit d'après la directive européenne 38/2008 signaler précisément les sources de protéines et d'amidons employées. Nous avons précédemment vu que cette définition extrêmement large a permis à de nombreux aliments de se positionner en tant qu'hypoallergénique, alors que ce terme n'est pas inclus dans la réglementation et que la qualité attendue, notamment en terme de contamination, n'était pas présente. Ainsi, pour l'auteur, le premier élément à analyser considérant ces aliments est la crédence que l'on peut avoir dans la marque.

Ici nous n'avons pris en tant qu'aliment pour "intolérance alimentaire" uniquement ceux des cinq grandes marques vétérinaires vendues en France, et étant soit à base de protéines hydrolysées soit avec des sources de protéines définies et peu employées dans les autres aliments. La figure 11.2

présente la teneur en protéines et en matières grasses des aliments avec une indication "intolérance alimentaire". On peut remarquer que la teneur en protéines est bien plus faible que celle des aliments physiologique. Cela peut s'explique en partie par le prix de ces protéines particulière (surtout les hydrolysées), et par leur haute efficacité.

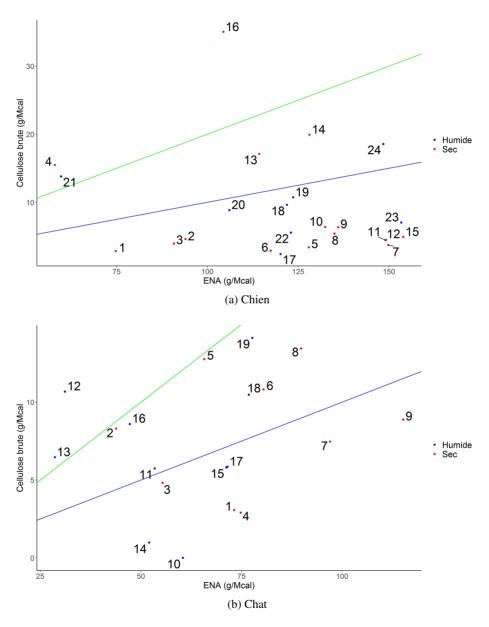



FIGURE 11.1: Apports en cellulose brute et ENA en g/Mcal des différents aliments avec une indication gastro-intestinale à destination du chien et du chat. Les droites diagonales verte et bleu correspondent respectivement au rapport 1:5 et 1:10.

Conclusion 175

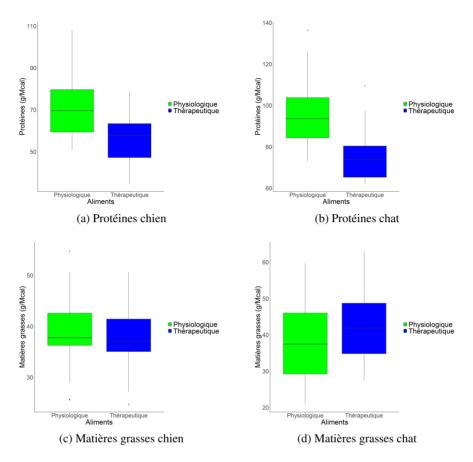



FIGURE 11.2: Apport en Protéines et Matières grasses des aliments avec une indication Réduction des intolérances à certains ingrédients et nutriments à destination du chien et du chat, par rapport aux aliments physiologiques des marques vétérinaires.

#### 11.5 Conclusion

Les affections intestinales sont courante chez le chien et le chat. L'alimentation y joue un rôle qui peut être à la fois thérapeutique et diagnostic. Cependant, il est important de bien sélectionner l'aliment employé dans ce but afin de maximiser les chances de réussite du plan diététique.

#### 11.6 Exercices

Exercice 11.1 Adam est un Berger australien mâle stérilisé de 9 ans, 20 kg (poids de forme 25 kg) et sédentaire atteint d'une lymphangiectasie avec pertes de protéines diagnostiquée il y a un an. Au moment du diagnostic, il est mis sous Virbac Gastro 1-Digestive support. En traitement il reçoit du 1mg/ kg de prédnisolone. Malgré l'alimentation et le traitements, Adam présente toujours d'importantes diarrhées et continue de perdre du poids. Il y a 4 mois, une tentative d'augmentation de la prednisolone à 2mg/kg a conduit à un syndrome de Cushing. Pour essayer d'enrayer la perte de poids le propriétaire a augmenté la dose de croquette à 375g/jour, sans succès.

Analyser la ration actuelle d'Adam puis proposer en le justifiant un plan diététique.

Exercice 11.2 Axelot est un Teckel mâle stérilisé de 11 ans, 11 kg (NEC : 3/5) et sédentaire atteint de diarrhées chroniques. Après examens complémentaires, vous suspectez une entéropathie chronique.

Discuter des plans diététiques à court et moyen termes possibles pour Axelot sachant que, au choix, il a une DRCA ou il a une DRIS.

#### Exercice 11.3 Analysez et critiquez les aliments suivants :

- Ownat Hypoallergenic au saumon chien
- Calibra Hypoallergenic ADULT MEDIUM BREED Lamb and Rice
- Royal Canin Anallergenic Chien

#### 11.7 Références

- [1] Stephen J. ETTINGER, Edward C. FELDMAN et Etienne COTE. *Textbook of Veterinary Internal Medicine*. Elsevier Health Sciences, 11 jan. 2017. 2451 pages. ISBN: 978-0-323-31239-4. Google Books: 57XBDQAAQBAJ (cf. page 167).
- [2] J. R. S. DANDRIEUX. "Inflammatory Bowel Disease versus Chronic Enteropathy in Dogs: Are They One and the Same?" In: *J Small Anim Pract* 57.11 (1<sup>er</sup> nov. 2016), pages 589-599. ISSN: 1748-5827. DOI: 10.1111/jsap.12588 (cf. pages 167, 168).
- [3] Kenneth W. SIMPSON et Albert E. JERGENS. "Pitfalls and Progress in the Diagnosis and Management of Canine Inflammatory Bowel Disease". In: *Veterinary Clinics of North America: Small Animal Practice*. Chronic Intestinal Diseases of Dogs and Cats 41.2 (1<sup>er</sup> mar. 2011), pages 381-398. ISSN: 0195-5616. DOI: 10.1016/j.cvsm.2011.02.003 (cf. pages 167, 168).
- [4] M. VOLKMANN et al. "Chronic Diarrhea in Dogs Retrospective Study in 136 Cases". In: *J Vet Intern Med* 31.4 (2017), pages 1043-1055. ISSN: 0891-6640. DOI: 10.1111/jvim. 14739. pmid: 28703447 (cf. pages 167, 168).
- [5] Houston DM, Ribble Cs et Head LL. "Risk Factors Associated with Parvovirus Enteritis in Dogs: 283 Cases (1982-1991)." In: J Am Vet Med Assoc 208.4 (1<sup>er</sup> fév. 1996), pages 542-546. ISSN: 0003-1488, 1943-569X. pmid: 8603904. URL: https://europepmc.org/ article/med/8603904 (visité le 24/02/2020) (cf. page 168).
- [6] Andrea C. DE SANTIS-KERR et al. "Prevalence and Risk Factors for Giardia and Coccidia Species of Pet Cats in 2003-2004". In: *J. Feline Med. Surg.* 8.5 (oct. 2006), pages 292-301. ISSN: 1098-612X. DOI: 10.1016/j.jfms.2006.02.005. pmid: 16678461 (cf. page 168).
- [7] L. T. GLICKMAN et al. "Breed-Related Risk Factors for Canine Parvovirus Enteritis". In: J. Am. Vet. Med. Assoc. 187.6 (15 sept. 1985), pages 589-594. ISSN: 0003-1488. pmid: 3003015 (cf. page 168).
- [8] J. R. MESQUITA et M. S. J. NASCIMENTO. "Gastroenteritis Outbreak Associated With Faecal Shedding of Canine Norovirus in a Portuguese Kennel Following Introduction of Imported Dogs From Russia". In: *Transboundary and Emerging Diseases* 59.5 (2012), pages 456-459. ISSN: 1865-1682. DOI: 10.1111/j.1865-1682.2011.01284.x (cf. page 168).

[9] Susanne H. SOKOLOW et al. "Epidemiologic Evaluation of Diarrhea in Dogs in an Animal Shelter". In: *American Journal of Veterinary Research* 66.6 (1er juin 2005), pages 1018-1024. ISSN: 0002-9645. DOI: 10.2460/ajvr.2005.66.1018 (cf. page 168).

- [10] Jennifer L. JONES et al. "Whole Genome Sequencing Confirms Source of Pathogens Associated with Bacterial Foodborne Illness in Pets Fed Raw Pet Food". In: *J VET Diagn Invest* 31.2 (1er mar. 2019), pages 235-240. ISSN: 1040-6387. DOI: 10.1177/1040638718823046 (cf. page 168).
- [11] Josefin HELLGREN et al. "Occurrence of Salmonella, Campylobacter, Clostridium and Enterobacteriaceae in Raw Meat-Based Diets for Dogs". In: *Veterinary Record* 184.14 (6 avr. 2019), pages 442-442. ISSN: 0042-4900, 2042-7670. DOI: 10.1136/vr.105199. pmid: 30833301 (cf. page 168).
- [12] S. A. KRUTH et al. "Nosocomial Diarrhea Associated with Enterotoxigenic Clostridium Perfringens Infection in Dogs". In: *J. Am. Vet. Med. Assoc.* 195.3 (1er août 1989), pages 331-334. ISSN: 0003-1488. pmid: 2548985 (cf. page 168).
- [13] Karin U. SORENMO et al. "Efficacy and Toxicity of a Dose-Intensified Doxorubicin Protocol in Canine Hemangiosarcoma". In: *Journal of Veterinary Internal Medicine* 18.2 (2004), pages 209-213. ISSN: 1939-1676. DOI: 10.1111/j.1939-1676.2004.tb00162.x (cf. page 168).
- [14] AIan S. HAMMER et al. "Efficacy and Toxicity of VAC Chemotherapy (Vincristine, Doxorubicin, and Cyclophosphamide) in Dogs with Hemangiosarcoma". In: *Journal of Veterinary Internal Medicine* 5.3 (1991), pages 160-166. ISSN: 1939-1676. DOI: 10.1111/j.1939-1676.1991.tb00943.x (cf. page 168).
- [15] K. ALLENSPACH, C. CULVERWELL et D. CHAN. "Long-Term Outcome in Dogs with Chronic Enteropathies: 203 Cases". In: *Veterinary Record* 178.15 (9 avr. 2016), pages 368-368. ISSN: 0042-4900, 2042-7670. DOI: 10.1136/vr.103557. pmid: 26811439 (cf. pages 168, 171).
- [16] Kelly Makielski et al. "Narrative Review of Therapies for Chronic Enteropathies in Dogs and Cats". In: *Journal of Veterinary Internal Medicine* 33.1 (2019), pages 11-22. ISSN: 1939-1676. DOI: 10.1111/jvim.15345 (cf. pages 168, 171).
- [17] A. J. GERMAN, E. J. HALL et M. J. DAY. "Chronic Intestinal Inflammation and Intestinal Disease in Dogs". In: *Journal of Veterinary Internal Medicine* 17.1 (2003), pages 8-20. ISSN: 1939-1676. DOI: 10.1111/j.1939-1676.2003.tb01318.x (cf. page 168).
- [18] Nicholas J. CAVE et Stanley L. MARKS. "Evaluation of the Immunogenicity of Dietary Proteins in Cats and the Influence of the Canning Process". In: *American Journal of Veterinary Research* 65.10 (1er oct. 2004), pages 1427-1433. ISSN: 0002-9645. DOI: 10.2460/ajvr. 2004.65.1427 (cf. page 168).
- [19] Nick CAVE. "Nutritional Management of Gastrointestinal Diseases". In: *Applied Veterinary Clinical Nutrition*. Sous la direction d'Andrea J. FASCETTI et Sean J. DELANEY. Chichester, West Sussex; Ames, Iowa: John Wiley & Sons, 2012, pages 175-219. ISBN: 978-0-8138-0657-0 (cf. pages 168, 172).
- [20] K. R. KERR et al. "Apparent Total Tract Energy and Macronutrient Digestibility and Fecal Fermentative End-Product Concentrations of Domestic Cats Fed Extruded, Raw Beef-Based, and Cooked Beef-Based Diets". In: *J Anim Sci* 90.2 (1<sup>er</sup> fév. 2012), pages 515-522. ISSN: 0021-8812. DOI: 10.2527/jas.2010-3266 (cf. pages 168, 170).

- [21] Kiley M. ALGYA et al. "Apparent Total-Tract Macronutrient Digestibility, Serum Chemistry, Urinalysis, and Fecal Characteristics, Metabolites and Microbiota of Adult Dogs Fed Extruded, Mildly Cooked, and Raw Diets". In: *J Anim Sci* 96.9 (7 sept. 2018), pages 3670-3683. ISSN: 0021-8812. DOI: 10.1093/jas/sky235 (cf. pages 168, 170).
- [22] Olivier DOSSIN et Rachel LAVOUÉ. "Protein-Losing Enteropathies in Dogs". In: *Veterinary Clinics of North America: Small Animal Practice*. Chronic Intestinal Diseases of Dogs and Cats 41.2 (1<sup>er</sup> mar. 2011), pages 399-418. ISSN: 0195-5616. DOI: 10.1016/j.cvsm.2011. 02.002 (cf. page 169).
- [23] S. E. KIMMEL, L. S. WADDELL et K. E. MICHEL. "Hypomagnesemia and Hypocalcemia Associated with Protein-Losing Enteropathy in Yorkshire Terriers: Five Cases (1992-1998)". In: *J. Am. Vet. Med. Assoc.* 217.5 (1er sept. 2000), pages 703-706. ISSN: 0003-1488. DOI: 10.2460/javma.2000.217.703. pmid: 10976303 (cf. page 169).
- [24] Polly B. PETERSON et Michael D. WILLARD. "Protein-Losing Enteropathies". In: *Vet. Clin. North Am. Small Anim. Pract.* 33.5 (sept. 2003), pages 1061-1082. ISSN: 0195-5616. DOI: 10.1016/s0195-5616(03)00055-x. pmid: 14552161 (cf. page 169).
- [25] E. B. Breitschwerdt. "Immunoproliferative Enteropathy of Basenjis." In: *Seminars in Veterinary Medicine and Surgery (Small Animal)*. Tome 7. 1992, pages 153-161 (cf. page 169).
- [26] N. BERGHOFF et al. "Prevalence of Enteropathy in the North American Population of the Norwegian Lundehund". In: *Proc 22nd ACVIM Forum*. Tome 853. 2004 (cf. page 169).
- [27] K. FLESJÅ et T. YRI. "Protein-Losing Enteropathy in the Lundehund". In: *J Small Anim Pract* 18.1 (jan. 1977), pages 11-23. ISSN: 0022-4510. DOI: 10.1111/j.1748-5827.1977. tb05819.x. pmid: 853728 (cf. page 169).
- [28] M. P. LITTMAN et al. "Familial Protein-Losing Enteropathy and Protein-Losing Nephropathy in Soft Coated Wheaten Terriers: 222 Cases (1983-1997)". In: *J. Vet. Intern. Med.* 14.1 (2000 Jan-Feb), pages 68-80. ISSN: 0891-6640. DOI: 10.1892/0891-6640 (2000)014<0068: fpleap>2.3.co; 2. pmid: 10668820 (cf. page 169).
- [29] Thomas R. ZIEGLER et al. "Trophic and Cytoprotective Nutrition for Intestinal Adaptation, Mucosal Repair, and Barrier Function". In: *Annual Review of Nutrition* 23.1 (2003), pages 229-261. DOI: 10.1146/annurev.nutr.23.011702.073036. pmid: 12626687 (cf. pages 169, 172).
- [30] Glenn HERNANDEZ et al. "Gut Mucosal Atrophy after a Short Enteral Fasting Period in Critically Ill Patients". In: *Journal of Critical Care* 14.2 (1<sup>er</sup> juin 1999), pages 73-77. ISSN: 0883-9441. DOI: 10.1016/S0883-9441(99)90017-5 (cf. page 169).
- [31] R. J. HADFIELD et al. "Effects of Enteral and Parenteral Nutrition on Gut Mucosal Permeability in the Critically III". In: Am. J. Respir. Crit. Care Med. 152 (5 Pt 1 nov. 1995), pages 1545-1548. ISSN: 1073-449X. DOI: 10.1164/ajrccm.152.5.7582291. pmid: 7582291 (cf. page 169).
- [32] Jian LI et al. "Effects of Parenteral and Enteral Nutrition on Gut-Associated Lymphoid Tissue". In: Journal of Trauma and Acute Care Surgery 39.1 (juil. 1995), pages 44-52. ISSN: 2163-0755. URL: https://journals.lww.com/jtrauma/Fulltext/1995/07000/Effects\_of\_Parenteral\_and\_Enteral\_Nutrition\_on.6.aspx (visité le 27/02/2020) (cf. page 169).

[33] B. K. KING, J. LI et K. A. KUDSK. "A Temporal Study of TPN-Induced Changes in Gut-Associated Lymphoid Tissue and Mucosal Immunity". In: *Arch Surg* 132.12 (déc. 1997), pages 1303-1309. ISSN: 0004-0010. DOI: 10.1001/archsurg.1997.01430360049009. pmid: 9403534 (cf. page 169).

- [34] K A KUDSK, J LI et K B RENEGAR. "Loss of Upper Respiratory Tract Immunity with Parenteral Feeding." In: *Ann Surg* 223.6 (juin 1996), pages 629-638. ISSN: 0003-4932. pmid: 8645036. URL: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1235201/(visité le 27/02/2020) (cf. page 169).
- [35] Albert J. MOHR et al. "Effect of Early Enteral Nutrition on Intestinal Permeability, Intestinal Protein Loss, and Outcome in Dogs with Severe Parvoviral Enteritis". In: *J. Vet. Intern. Med.* 17.6 (2003 Nov-Dec), pages 791-798. ISSN: 0891-6640. DOI: 10.1111/j.1939-1676.2003.tb02516.x.pmid: 14658714 (cf. page 169).
- [36] K. WILL, I. NOLTE et J. ZENTEK. "Early Enteral Nutrition in Young Dogs Suffering from Haemorrhagic Gastroenteritis". In: *J Vet Med A Physiol Pathol Clin Med* 52.7 (sept. 2005), pages 371-376. ISSN: 0931-184X. DOI: 10.1111/j.1439-0442.2005.00745.x. pmid: 16109106 (cf. page 169).
- [37] Beth A HAMPER, Claudia A KIRK et Joseph W BARTGES. "Apparent Nutrient Digestibility of Two Raw Diets in Domestic Kittens". In: *Journal of Feline Medicine and Surgery* 18.12 (1<sup>er</sup> déc. 2016), pages 991-996. ISSN: 1098-612X. DOI: 10.1177/1098612X15605535 (cf. page 170).
- [38] Susie J. MEADE, Elizabeth A. REID et Juliet A. GERRARD. "The Impact of Processing on the Nutritional Quality of Food Proteins". In: *J AOAC Int* 88.3 (2005 May-Jun), pages 904-922. ISSN: 1060-3271. pmid: 16001869 (cf. page 170).
- [39] W. H. HENDRIKS et al. "Heat Processing Changes the Protein Quality of Canned Cat Foods as Measured with a Rat Bioassay". In: *J. Anim. Sci.* 77.3 (mar. 1999), pages 669-676. ISSN: 0021-8812. DOI: 10.2527/1999.773669x. pmid: 10229363 (cf. page 170).
- [40] Suzanne M. HODGKINSON et al. "Cooking Conditions Affect the True Ileal Digestible Amino Acid Content and Digestible Indispensable Amino Acid Score (DIAAS) of Bovine Meat as Determined in Pigs". In: *J Nutr* 148.10 (1<sup>er</sup> oct. 2018), pages 1564-1569. ISSN: 0022-3166. DOI: 10.1093/jn/nxy153 (cf. page 170).
- [41] Sally C. PEREA et al. "Evaluation of Two Dry Commercial Therapeutic Diets for the Management of Feline Chronic Gastroenteropathy". In: *Frontiers in Veterinary Science* 4 (10 mai 2017). ISSN: 2297-1769. DOI: 10.3389/fvets.2017.00069 (cf. page 170).
- [42] Dorothy P LAFLAMME et al. "Evaluation of Canned Therapeutic Diets for the Management of Cats with Naturally Occurring Chronic Diarrhea". In: *Journal of Feline Medicine and Surgery* 14.10 (1er oct. 2012), pages 669-677. ISSN: 1098-612X. DOI: 10.1177/1098612X12446906 (cf. page 170).
- [43] P. J. J. MANDIGERS et al. "A Randomized, Open-Label, Positively-Controlled Field Trial of a Hydrolyzed Protein Diet in Dogs with Chronic Small Bowel Enteropathy". In: *J. Vet. Intern. Med.* 24.6 (2010 Nov-Dec), pages 1350-1357. ISSN: 0891-6640. DOI: 10.1111/j.1939-1676.2010.0632.x. pmid: 21054541 (cf. pages 170, 171).

- [44] Camilla TØRNQVIST-JOHNSEN et al. "Investigation of the Efficacy of a Dietetic Food in the Management of Chronic Enteropathies in Dogs". In: *Veterinary Record* 186.1 (4 jan. 2020), pages 26-26. ISSN: 0042-4900, 2042-7670. DOI: 10.1136/vr.105172. pmid: 31662575 (cf. page 170).
- [45] J. W. SIMPSON, I. E. MASKELL et P. J. MARKWELL. "Use of a Restricted Antigen Diet in the Management of Idiopathic Canine Colitis". In: *Journal of Small Animal Practice* 35.5 (1994). \_eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1748-5827.1994.tb03265.x, pages 233-238. ISSN: 1748-5827. DOI: 10.1111/j.1748-5827.1994.tb03265.x (cf. page 170).
- [46] Karen WINDEY, Vicky De PRETER et Kristin VERBEKE. "Relevance of Protein Fermentation to Gut Health". In: *Molecular Nutrition & Food Research* 56.1 (2012), pages 184-196. ISSN: 1613-4133. DOI: 10.1002/mnfr.201100542 (cf. page 170).
- [47] J. NERY et al. "Influence of Dietary Protein Content and Source on Colonic Fermentative Activity in Dogs Differing in Body Size and Digestive Tolerance1". In: *Journal of Animal Science* 90.8 (1<sup>er</sup> août 2012), pages 2570-2580. ISSN: 0021-8812, 1525-3163. DOI: 10. 2527/jas.2011-4112 (cf. page 170).
- [48] J. ZENTEK. "Influence of Diet Composition on the Microbial Activity in the Gastro-Intestinal Tract of Dogs. I. Effects of Varying Protein Intake on the Composition of the Ileum Chyme and the Faeces". In: *Journal of Animal Physiology and Animal Nutrition* 74.1-5 (1995). \_eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1439-0396.1995.tb00435.x, pages 43-52. ISSN: 1439-0396. DOI: 10.1111/j.1439-0396.1995.tb00435.x (cf. page 170).
- [49] R. W. NELSON, M. E. DIMPERIO et G. G. LONG. "Lymphocytic-Plasmacytic Colitis in the Cat". In: *J. Am. Vet. Med. Assoc.* 184.9 (1er mai 1984), pages 1133-1135. ISSN: 0003-1488. pmid: 6725131 (cf. page 171).
- [50] W. Grant GUILFORD et al. "Food Sensitivity in Cats with Chronic Idiopathic Gastrointestinal Problems". In: *Journal of Veterinary Internal Medicine* 15.1 (2001), pages 7-13. ISSN: 1939-1676. DOI: 10.1111/j.1939-1676.2001.tb02291.x (cf. page 171).
- [51] K. ALLENSPACH et al. "Chronic Enteropathies in Dogs: Evaluation of Risk Factors for Negative Outcome". In: *Journal of Veterinary Internal Medicine* 21.4 (2007), pages 700-708. ISSN: 1939-1676. DOI: 10.1111/j.1939-1676.2007.tb03011.x (cf. page 171).
- [52] S. N. SAUTER et al. "Effects of Probiotic Bacteria in Dogs with Food Responsive Diarrhoea Treated with an Elimination Diet\*". In: *Journal of Animal Physiology and Animal Nutrition* 90.7-8 (2006). \_eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1439-0396.2005.00595.x, pages 269-277. ISSN: 1439-0396. DOI: 10.1111/j.1439-0396.2005. 00595.x (cf. page 171).
- [53] Nicole LUCKSCHANDER et al. "Perinuclear Antineutrophilic Cytoplasmic Antibody and Response to Treatment in Diarrheic Dogs with Food Responsive Disease or Inflammatory Bowel Disease". In: *Journal of Veterinary Internal Medicine* 20.2 (2006). \_eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1939-1676.2006.tb02849.x, pages 221-227. ISSN: 1939-1676. DOI: 10.1111/j.1939-1676.2006.tb02849.x (cf. page 171).
- [54] Elena PAGANI et al. "Cross-Contamination in Canine and Feline Dietetic Limited-Antigen Wet Diets". In: *BMC Vet Res* 14.1 (12 sept. 2018), page 283. ISSN: 1746-6148. DOI: 10.1186/s12917-018-1571-4 (cf. page 171).

[55] Rebecca RICCI et al. "Undeclared Animal Species in Dry and Wet Novel and Hydrolyzed Protein Diets for Dogs and Cats Detected by Microarray Analysis". In: *BMC Vet Res* 14.1 (27 juin 2018), page 209. ISSN: 1746-6148. DOI: 10.1186/s12917-018-1528-7 (cf. page 171).

- [56] Adam J. RUDINSKY, John C. ROWE et Valerie J. PARKER. "Nutritional Management of Chronic Enteropathies in Dogs and Cats". In: *Journal of the American Veterinary Medical Association* 253.5 (15 août 2018), pages 570-578. ISSN: 0003-1488. DOI: 10.2460/javma. 253.5.570 (cf. page 171).
- [57] Kenichi MASUDA et al. "Hydrolyzed Diets May Stimulate Food-Reactive Lymphocytes in Dogs". In: *Journal of Veterinary Medical Science* advpub (2019). DOI: 10.1292/jvms.19-0222 (cf. page 171).
- [58] A. LOEFFLER et al. "Dietary Trials with a Commercial Chicken Hydrolysate Diet in 63 Pruritic Dogs". In: *Veterinary Record* 154.17 (24 avr. 2004), pages 519-522. ISSN: 0042-4900, 2042-7670. DOI: 10.1136/vr.154.17.519 (cf. page 171).
- [59] Stanley L. MARKS, Dottie P. LAFLAMME et Denise MCALOOSE. "Dietary Trial Using a Commercial Hypoallergenic Diet Containing Hydrolyzed Protein for Dogs with Inflammatory Bowel Disease". In: *Vet. Ther.* 3.2 (2002), pages 109-118. ISSN: 1528-3593. pmid: 19750741 (cf. page 171).
- [60] D. WALKER et al. "A Comprehensive Pathological Survey of Duodenal Biopsies from Dogs with Diet-Responsive Chronic Enteropathy". In: *Journal of Veterinary Internal Medicine* 27.4 (2013). \_eprint : https://onlinelibrary.wiley.com/doi/pdf/10.1111/jvim.12093, pages 862-874. ISSN: 1939-1676. DOI: 10.1111/jvim.12093 (cf. page 171).
- [61] Nicholas J. CAVE. "Hydrolyzed Protein Diets for Dogs and Cats". In: *Veterinary Clinics:*Small Animal Practice 36.6 (1<sup>er</sup> nov. 2006), pages 1251-1268. ISSN: 0195-5616, 1878-1306.

  DOI: 10.1016/j.cvsm.2006.08.008. pmid: 17085233 (cf. page 171).
- [62] Thierry OLIVRY, Jennifer BEXLEY et Isabelle MOUGEOT. "Extensive Protein Hydrolyzation Is Indispensable to Prevent IgE-Mediated Poultry Allergen Recognition in Dogs and Cats". In: *BMC Vet Res* 13.1 (17 août 2017), page 251. ISSN: 1746-6148. DOI: 10.1186/s12917-017-1183-4 (cf. page 171).
- [63] Petra BIZIKOVA et Thierry OLIVRY. "A Randomized, Double-Blinded Crossover Trial Testing the Benefit of Two Hydrolysed Poultry-Based Commercial Diets for Dogs with Spontaneous Pruritic Chicken Allergy". In: *Veterinary Dermatology* 27.4 (2016). \_eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1111/vde.12302, 289-e70. ISSN: 1365-3164. DOI: 10.1111/vde.12302 (cf. page 171).
- [64] Olivier ROITEL et al. "Detection of IgE-Reactive Proteins in Hydrolysed Dog Foods". In: *Veterinary Dermatology* 28.6 (2017). \_eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1111/vde.12473, 589-e143. ISSN: 1365-3164. DOI: 10.1111/vde.12473 (cf. page 171).
- [65] Vincent C. BIOURGE, Jacques FONTAINE et Margreet W. VROOM. "Diagnosis of Adverse Reactions to Food in Dogs: Efficacy of a Soy-Isolate Hydrolyzate-Based Diet". In: *The Journal of Nutrition* 134.8 (1er août 2004), 2062S-2064S. ISSN: 0022-3166, 1541-6100. DOI: 10.1093/jn/134.8.2062S (cf. page 171).

- [66] Molly SCHLEICHER, Sean B. CASH et Lisa M. FREEMAN. "Determinants of Pet Food Purchasing Decisions". In: Can Vet J 60.6 (juin 2019), pages 644-650. ISSN: 0008-5286. pmid: 31156266. URL: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6515811/(visité le 27/02/2020) (cf. page 171).
- [67] M. LOWRIE et al. "A Presumptive Case of Gluten Sensitivity in a Border Terrier: A Multisystem Disorder?" In: *Veterinary Record* 179.22 (3 déc. 2016), pages 573-573. ISSN: 0042-4900, 2042-7670. DOI: 10.1136/vr.103910. pmid: 27784836 (cf. page 171).
- [68] M. LOWRIE et al. "The Clinical and Serological Effect of a Gluten-Free Diet in Border Terriers with Epileptoid Cramping Syndrome". In: *J Vet Intern Med* 29.6 (2015), pages 1564-1568. ISSN: 0891-6640. DOI: 10.1111/jvim.13643. pmid: 26500168 (cf. page 171).
- [69] E. J. HALL et R. M. BATT. "Development of Wheat-Sensitive Enteropathy in Irish Setters: Morphologic Changes". In: *Am. J. Vet. Res.* 51.7 (juil. 1990), pages 978-982. ISSN: 0002-9645. pmid: 2389896 (cf. page 171).
- [70] E. J. HALL et R. M. BATT. "Development of Wheat-Sensitive Enteropathy in Irish Setters: Biochemical Changes". In: *Am. J. Vet. Res.* 51.7 (juil. 1990), pages 983-989. ISSN: 0002-9645. pmid: 1975161 (cf. page 171).
- [71] E J HALL et R M BATT. "Abnormal Permeability Precedes the Development of a Gluten Sensitive Enteropathy in Irish Setter Dogs." In: Gut 32.7 (juil. 1991), pages 749-753. ISSN: 0017-5749. pmid: 1906829. URL: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1378989/ (visité le 27/02/2020) (cf. page 171).
- [72] E J HALL et R M BATT. "Dietary Modulation of Gluten Sensitivity in a Naturally Occurring Enteropathy of Irish Setter Dogs." In: *Gut* 33.2 (fév. 1992), pages 198-205. ISSN: 0017-5749. pmid: 1347279. URL: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1373930/(visité le 27/02/2020) (cf. page 171).
- [73] S. L. MARKS et al. "Dietary Modulation of Methotrexate-Induced Enteritis in Cats". In: *Am. J. Vet. Res.* 58.9 (sept. 1997), pages 989-996. ISSN: 0002-9645. pmid: 9285003 (cf. page 172).
- [74] Nicolás VELASCO et al. "Influence of Polymeric Enteral Nutrition Supplemented with Different Doses of Glutamine on Gut Permeability in Critically Ill Patients". In: *Nutrition* 17.11 (1<sup>er</sup> nov. 2001), pages 907-911. ISSN: 0899-9007. DOI: 10.1016/S0899-9007 (01) 00613-X (cf. page 172).
- [75] D. P. LAFLAMME, H. XU et G. M. LONG. "Effect of Diets Differing in Fat Content on Chronic Diarrhea in Cats". In: *Journal of Veterinary Internal Medicine* 25.2 (2011), pages 230-235. ISSN: 1939-1676. DOI: 10.1111/j.1939-1676.2010.0665.x (cf. page 172).
- [76] G. L. JENSEN et al. "Lymphatic Absorption of Enterally Fed Structured Triacylglycerol vs Physical Mix in a Canine Model". In: *Am. J. Clin. Nutr.* 60.4 (oct. 1994), pages 518-524. ISSN: 0002-9165. DOI: 10.1093/ajcn/60.4.518. pmid: 8092086 (cf. page 172).
- [77] Huiling MU et Carl-Erik HØY. "Effects of Different Medium-Chain Fatty Acids on Intestinal Absorption of Structured Triacylglycerols". In: *Lipids* 35.1 (2000). \_eprint: https://aocs.onlinelibrary.wiley.com/doi/pdf/10.1007/s11745-000-0498-x, pages 83-89. ISSN: 1558-9307. DOI: 10.1007/s11745-000-0498-x (cf. page 172).

[78] H. OKANISHI et al. "The Clinical Efficacy of Dietary Fat Restriction in Treatment of Dogs with Intestinal Lymphangiectasia". In: *J Vet Intern Med* 28.3 (mai 2014), pages 809-817. ISSN: 08916640. DOI: 10.1111/jvim.12327 (cf. page 172).

- [79] A. J. RUDINSKY et al. "Dietary Management of Presumptive Protein-Losing Enteropathy in Yorkshire Terriers". In: *Journal of Small Animal Practice* 58.2 (2017), pages 103-108. ISSN: 1748-5827. DOI: 10.1111/jsap.12625 (cf. page 172).
- [80] Sebastien LEFEBVRE, Denis GRANCHER et L ALVES DE OLIVEIRA. "You Said "gastro-Intestinal" Food? Approach of Petfood Diversity during a Student-Conducted Consultation." In: Published: 23rd congress of the European Society of Veterinary and Comparative Nutrition (ESVCN 2019). Turino, sept. 2019. URL: https://hal.archives-ouvertes. fr/hal-02295150 (visité le 27/02/2020) (cf. page 172).
- [81] S. M. SIMMERSON et al. "Clinical Features, Intestinal Histopathology, and Outcome in Protein-Losing Enteropathy in Yorkshire Terrier Dogs". In: *Journal of Veterinary Internal Medicine* 28.2 (2014). \_eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1111/jvim.12291, pages 331-337. ISSN: 1939-1676. DOI: 10.1111/jvim.12291 (cf. page 172).
- [82] D. MATTHEEUWS et al. "Intestinal Lymphangiectasia in a Dog". In: *Journal of Small Animal Practice* 15.12 (1974). \_eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1748-5827.1974.tb05662.x, pages 757-761. ISSN: 1748-5827. DOI: 10.1111/j.1748-5827. 1974.tb05662.x (cf. page 172).
- [83] Hermann HARDER et al. "Effect of High- and Low-Caloric Mixed Liquid Meals on Intestinal Gas Dynamics". In: *Dig Dis Sci* 51.1 (1<sup>er</sup> jan. 2006), pages 140-146. ISSN: 1573-2568. DOI: 10.1007/s10620-006-3099-x (cf. page 172).
- [84] Sutep GONLACHANVIT et al. "Nutrient Modulation of Intestinal Gas Dynamics in Healthy Humans: Dependence on Caloric Content and Meal Consistency". In: *Am. J. Physiol. Gastrointest. Liver Physiol.* 291.3 (sept. 2006), G389-395. ISSN: 0193-1857. DOI: 10.1152/ajpgi.00526.2005. pmid: 16899712 (cf. page 172).
- [85] Mark PIMENTEL et al. "Methane, a Gas Produced by Enteric Bacteria, Slows Intestinal Transit and Augments Small Intestinal Contractile Activity". In: *Am. J. Physiol. Gastrointest. Liver Physiol.* 290.6 (juin 2006), G1089-1095. ISSN: 0193-1857. DOI: 10.1152/ajpgi. 00574.2004. pmid: 16293652 (cf. page 172).
- [86] Justin R. DANN et al. "A Potential Nutritional Prophylactic for the Reduction of Feline Hairball Symptoms". In: *J Nutr* 134.8 (1<sup>er</sup> août 2004), 2124S-2125S. ISSN: 0022-3166. DOI: 10.1093/jn/134.8.2124S (cf. page 173).
- [87] Valerie Freiche et al. "Uncontrolled Study Assessing the Impact of a Psyllium-Enriched Extruded Dry Diet on Faecal Consistency in Cats with Constipation". In: *Journal of Feline Medicine and Surgery* 13.12 (1er déc. 2011), pages 903-911. ISSN: 1098-612X. DOI: 10.1016/j.jfms.2011.07.008 (cf. page 173).
- [88] W. ASHRAF et al. "Comparative Effects of Intraduodenal Psyllium and Senna on Canine Small Bowel Motility". In: *Alimentary Pharmacology & Therapeutics* 8.3 (1994). \_eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1365-2036.1994.tb00296.x, pages 329-336. ISSN: 1365-2036. DOI: 10.1111/j.1365-2036.1994.tb00296.x (cf. page 173).

- [89] Carlo PINNA et Giacomo BIAGI. "The Utilisation of Prebiotics and Synbiotics in Dogs". In: *Italian Journal of Animal Science* 13.1 (jan. 2014), page 3107. ISSN: 1828-051X. DOI: 10.4081/ijas.2014.3107 (cf. page 173).
- [90] J. H. CUMMINGS, G. T. MACFARLANE et H. N. ENGLYST. "Prebiotic Digestion and Fermentation". In: *Am. J. Clin. Nutr.* 73 (2 Suppl fév. 2001), 415S-420S. ISSN: 0002-9165. DOI: 10.1093/ajcn/73.2.415s. pmid: 11157351 (cf. page 173).
- [91] Eden Ephraim GEBRESELASSIE et al. "Anti-Aging Food That Improves Markers of Health in Senior Dogs by Modulating Gut Microbiota and Metabolite Profiles". In: *bioRxiv* (16 mai 2018), page 324327. DOI: 10.1101/324327 (cf. page 173).
- [92] Omaida C. VELÁZQUEZ, Howard M. LEDERER et John L. ROMBEAU. "Butyrate and the Colonocyte". In: *Digest Dis Sci* 41.4 (1<sup>er</sup> avr. 1996), pages 727-739. ISSN: 1573-2568. DOI: 10.1007/BF02213129 (cf. page 173).
- [93] B. SINGH, A. P. HALESTRAP et C. PARASKEVA. "Butyrate Can Act as a Stimulator of Growth or Inducer of Apoptosis in Human Colonic Epithelial Cell Lines Depending on the Presence of Alternative Energy Sources." In: *Carcinogenesis* 18.6 (1<sup>er</sup> juin 1997), pages 1265-1270. ISSN: 0143-3334. DOI: 10.1093/carcin/18.6.1265 (cf. page 173).
- [94] Rodolphe SORET et al. "Short-Chain Fatty Acids Regulate the Enteric Neurons and Control Gastrointestinal Motility in Rats". In: *Gastroenterology* 138.5 (1er mai 2010), 1772-1782.e4. ISSN: 0016-5085. DOI: 10.1053/j.gastro.2010.01.053 (cf. page 173).
- [95] Kees MEIJER, Paul de Vos et Marion G. PRIEBE. "Butyrate and Other Short-Chain Fatty Acids as Modulators of Immunity: What Relevance for Health?" In: *Current Opinion in Clinical Nutrition & Metabolic Care* 13.6 (nov. 2010), pages 715-721. ISSN: 1363-1950. DOI: 10.1097/MCO.0b013e32833eebe5 (cf. page 173).
- [96] L. ROSE et al. "Efficacy of a Probiotic-Prebiotic Supplement on Incidence of Diarrhea in a Dog Shelter: A Randomized, Double-Blind, Placebo-Controlled Trial". In: *Journal of Veterinary Internal Medicine* 31.2 (2017), pages 377-382. ISSN: 1939-1676. DOI: 10.1111/jvim.14666 (cf. page 173).
- [97] S.n. BYBEE, A.v. SCORZA et M.r. LAPPIN. "Effect of the Probiotic Enterococcus Faecium SF68 on Presence of Diarrhea in Cats and Dogs Housed in an Animal Shelter". In: *Journal of Veterinary Internal Medicine* 25.4 (1<sup>er</sup> juil. 2011), pages 856-860. ISSN: 1939-1676. DOI: 10.1111/j.1939-1676.2011.0738.x (cf. page 173).
- [98] Konstantinos TRIANTAFYLLOU, Christopher CHANG et Mark PIMENTEL. "Methanogens, Methane and Gastrointestinal Motility". In: *J Neurogastroenterol Motil* 20.1 (jan. 2014), pages 31-40. ISSN: 2093-0879. DOI: 10.5056/jnm.2014.20.1.31. pmid: 24466443 (cf. page 173).
- [99] Robert J. BASSERI et al. "Intestinal Methane Production in Obese Individuals Is Associated with a Higher Body Mass Index". In: *Gastroenterol Hepatol (N Y)* 8.1 (jan. 2012), pages 22-28. ISSN: 1554-7914. pmid: 22347829. URL: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3277195/ (visité le 26/02/2020) (cf. page 173).

[100] Michael S. Leib. "Treatment of Chronic Idiopathic Large-Bowel Diarrhea in Dogs with a Highly Digestible Diet and Soluble Fiber: A Retrospective Review of 37 Cases". In: *Journal of Veterinary Internal Medicine* 14.1 (2000). \_eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1939-1676.2000.tb01495.x, pages 27-32. ISSN: 1939-1676. DOI: 10.1111/j.1939-1676.2000.tb01495.x (cf. page 173).

- [101] J. S. DENNIS, J. M. KRUGER et T. P. MULLANEY. "Lymphocytic/Plasmacytic Colitis in Cats: 14 Cases (1985-1990)". In: *J. Am. Vet. Med. Assoc.* 202.2 (15 jan. 1993), pages 313-318. ISSN: 0003-1488. pmid: 8428844 (cf. page 173).
- [102] Patrick LECOINDRE et Frédéric P. GASCHEN. "Chronic Idiopathic Large Bowel Diarrhea in the Dog". In: *Veterinary Clinics of North America: Small Animal Practice*. Chronic Intestinal Diseases of Dogs and Cats 41.2 (1er mar. 2011), pages 447-456. ISSN: 0195-5616. DOI: 10.1016/j.cvsm.2011.02.004 (cf. page 173).



Sébastien Lefebvre

## 12.1 Introduction

La peau est la barrière fondamentale des mammifères séparant l'individu du monde extérieur. C'est une protection non spécifique contre les bactéries, virus et autres agents pathogènes. La peau permet aussi de maintenir à l'intérieur du corps l'eau. Ainsi, une insuffisance de la qualité cutanée peut conduire à une augmentation de sa perméabilité favorisée alors des pertes d'eau transcutanées, ou le passage de pathogènes. De plus, ces zones plus sensibles peuvent être à l'origine d'un prurit qui renforce la fragilité cutanée.

La peau est en matière de poids le principal organe des mammifères, 24% du poids d'un chien adulte<sup>1</sup>. A l'importance de la masse cutanée s'ajoute l'intensité métabolique de cet organe en renouvellement continuel pour expliquer qu'il représente à lui seul à peu près 30% du besoin protéique de l'animal<sup>2</sup>. Par ailleurs, cela fait de la peau un organe très sensible aux déséquilibres alimentaires.

Enfin, la peau et le pelage sont des parties essentielles de la relation entre le propriétaire et son animal. A la fois sur l'aspect visuel et tactile, un pelage de bonne qualité est recherché par les propriétaires, c'est un signe de bonne santé, et il a des répercutions sur la relation homme/animal. Ainsi le maintien tout au long de la vie de l'animal d'un pelage adéquat est nécessaire pour préserver ce lien. Il va sans dire que cette nécessité de maintenir un pelage conforme, notamment concernant la couleur, est fondamentale pour ce qui concerne les concours de beauté.

L'accompagnement nutritionnel des animaux atteints de trouble cutané a pour but de diminuer leurs symptômes, dans certains cas, de les supprimer et de réduire le risque des récidives. Cet accompagnement doit se faire sur le long terme et ne saurait remplacer la prise en charge médicale de l'affection.

Dans un premier temps, ce chapitre présente les éléments généraux des affections cutanées pouvant nécessiter une prise en charge nutritionnelle. Par la suite, les points clefs de l'accompagnement nutritionnel et une analyse des aliments commerciaux disponibles sont détaillés.

# 12.2 Éléments généraux

#### 12.2.1 Carences

Du fait de l'important besoin en nutriment de la peau, des carences peuvent survenir et aboutir à des lésions cutanées. Le tableau 12.2 présente les différentes carences et les lésions cutanées qui leur sont associées. Les différents nutriments sont traités dans la section sur l'accompagnement nutritionnel. Les aliments de basse qualité, avec une digestibilité insuffisante et/ ou mal complémentés sont souvent à l'origine de ces carences. Depuis, la mise en place des réglementations codifiant la préparation des aliments commerciaux et des guides de fabrication précisant les apports minimums en nutriment, ces carences sont devenues plutôt rares.

| Carences               | Lésion                                              |
|------------------------|-----------------------------------------------------|
| Protéines              | Desquamation. Alopécie. Poil fin et cassant.        |
|                        | Perte de coloration. Diminution de la cicatrisation |
| Acides gras essentiels | Desquamation modérée. Pelage terne. La peau         |
|                        | s'amincit et devient grasse                         |
| Zinc                   | Érythème. Desquamation avec squames adhé-           |
|                        | rant. Développement de croûtes autour des jonc-     |
|                        | tions muco-cutanées et des points de pression.      |
| Cuivre                 | Dé-pigmentation du pelage et poil terne et ru-      |
|                        | gueux.                                              |
| Vitamine A             | Desquamation. Hyperkératose. Pelage terne           |
| Vitamine E             | Conséquence d'une pansteatite : gonflements         |
|                        | sous-cutanés douloureux, fermes et nodulaires       |
| Complexe vitamine B    | Poils secs et desquamation. Chéilites en cas de     |
|                        | carence en riboflavine                              |

TABLE 12.2: Carence alimentaire et symptômes cutanés associés, adapté de Outerbrige 2012<sup>3</sup>.

#### 12.2.2 Réactions cutanées à l'alimentation

Les réactions cutanées à l'alimentation, appelées, souvent à tort, allergie alimentaire, regroupent des réactions cutanées avec une composante immunitaire ou non. Ainsi, on peut y retrouver des réactions à composante immunitaire comme les hypersensibilités alimentaires et d'autre sans comme des intolérances alimentaires dont l'origine peut être une mauvaise réaction métabolique, une réaction idiosyncrasique (réaction spécifique à un aliment ressemblant à une hypersensibilité, mais sans composante immunitaire) ou toxique (histidine).

Actuellement, le mécanisme d'action de ces réactions, notamment celle à composante immunitaire, est mal connu. Rendant parfois compliqué le fait de déterminer si l'animal souffre ou non de réactions cutanées à l'alimentation. Ces incertitudes concernant le mécanisme et l'identification de l'affection,

peuvent donner lieu à des opinions d'expert mettant en doute la réalité même d'une partie (souvent les hypersensibilités) de cette affection. Cela est notamment dû au fait que cette affection est souvent confondue, même si des interactions peuvent exister, avec une dermatite atopique<sup>4-7</sup>. Ainsi, en absence de définition consensuelle permettant le diagnostic et la classification des réactions cutanées à l'alimentation, il est difficile d'aborder les notions de prévalence, voire même de marche à suivre pour le diagnostic et la prise en charge de ces affections. Dans la suite de ce chapitre, nous prendrons en compte une définition large des réactions cutanées à l'alimentation, à savoir les réactions cutanées rétrocédant suite à un changement alimentaire et qui surviennent de nouveau si l'aliment initial est de nouveau proposé. Il est probable que, à la lumière de nouvelles connaissances, cette approche soit revue dans les prochaines éditions.

Concernant la prévalence, et en conservant les réserves du paragraphe précédent, elle varie beaucoup selon les études entre 1 à 5% de l'ensemble des dermatoses <sup>1,8</sup>. Cette prévalence semble augmenter si l'on considère uniquement les dermatoses d'origine allergique, ou la présence de prurit, avec des écarts selon les études et assez peu d'études rapportées. Cependant, il ressort de ces études que les réactions cutanées à l'alimentation (hors des cas accidentels avec présence d'un toxique) sont des affections qui ne devrait être considéré qu'après avoir éliminé les autres hypothèses diagnostiques de dermatite et de prurit. Ces réactions surviennent majoritairement chez le jeune chien avant sa première année<sup>9</sup>.

Dans les cas de dermatite atopique, une des origines peut être l'alimentation, on parle alors de dermatite atopique induite par l'alimentation. Les signes d'appel de ces dermatites (sans être pathognomonique) sont la présence concomitante de symptômes gastro-intestinaux et/ou d'un prurit périanal<sup>10</sup>. Outre les réactions cutanées et les symptômes gastro-intestinaux, les autres symptômes rapportés à la suite d'une réaction à l'alimentation sont du ptyalisme, des conjonctivites, du ténesme et une augmentation de la fréquence de défécation<sup>11-15</sup>.

Comme énoncé plus haut la base du diagnostic d'une réaction cutanée à l'alimentation est le régime d'éviction. Il se décompose en 3 phases, 1) mise sous régime d'éviction d'éviction contenant des protéines hydrolysées ou de nouvelles sources de protéines durant 8 semaines, si les symptômes disparaissent, passage à la phase 2) mise sous l'alimentation initiale durant 2 semaines (challenge), si les symptômes réapparaissent passage à la phase 3) mise de nouveau sous régime d'éviction, si les symptômes régressent de nouveau la réaction à l'alimentation est confirmée<sup>16</sup>. Les autres méthodes de diagnostic, notamment *in vitro* sont inefficaces pour ce type d'affection<sup>12,17-20</sup>. De plus, certains résultats *in vitro* ne sont pas consistants entre les laboratoires<sup>21</sup>.

Cependant, le protocole de diagnostic par régime d'éviction a de nombreux désavantages et peut, dans de nombreux cas, donner lieu à des faux positifs ou des faux négatifs. Pour ce qui est des faux positifs, le protocole étant long, les symptômes peuvent régresser d'eux même sans liens avec l'alimentation (effet saisonnier) et certains propriétaires étant réticents à effectuer le challenge alimentaire, le diagnostic peut s'en trouver faussé. De plus, quand le régime d'éviction s'effectue avec un aliment commercial, celui-ci, en plus de ses propriétés d'éviction, contient souvent aussi des apports en vitamines, acides gras essentiels et minéraux ayant un effet bénéfique sur la peau et qui pourrait expliquer l'efficacité de l'alimentation.

Concernant les faux négatifs, ils peuvent être la conséquence, d'un mauvais choix dans le régime d'éviction, d'erreurs de préparation ou de conservation des aliments. Ainsi, dans le cas d'un régime d'éviction ménager il est important de donner des consignes strictes quant à sa préparation, de faire un bilan exhaustif des aliments que l'animal à pu recevoir et de commencer avec un régime très simple, quitte à ce que celui-ci soit un temps déséquilibré. Pour les aliments commerciaux, les deux principales sources de faux négatifs sont l'utilisation d'aliment de mauvaise qualité pour le régime

d'éviction, point amplement discuté dans la section sur les régimes à base d'hydrolyse ou de nouvelles sources de protéines dans le chapitre sur les affections intestinales et du colon (11.3.3)<sup>22</sup>. De plus, l'hygiène de la conservation de l'aliment et du lieu d'alimentation du chien est aussi à prendre en compte. En effet, des éléments de l'alimentation initiale peuvent rester présents dans la gamelle ou dans le lieu de stockage de l'aliment, si ceux-ci ne sont pas correctement nettoyés. Enfin, des acariens peuvent aussi se développer dans l'alimentation sèche et perturber le test d'éviction, le plus retrouvé est *Tyrophagus putrescentiae*<sup>23</sup>. Ces acariens ne sont pas initialement présents (ou indétectables) dans les paquets d'aliments<sup>24</sup>. Cependant, à l'occasion d'une brèche ou d'un déconditionnement, ils peuvent contaminer l'aliment et se reproduire. Ainsi, pour les régimes d'éviction, il est impératif d'utiliser des sacs neufs, hermétiquement fermés, de ne pas déconditionner l'aliment et de le stocker dans un endroit sec et à l'abri des fortes chaleurs pour éviter la croissance des acariens de stockage<sup>25</sup>.

Chez les chiens, les ingrédients les plus souvent rapportés comme induisant une réaction cutanée à l'alimentation sont le bœuf, les produits laitiers, le poulet, le blé et l'agneau. Chez le chat, ce sont le bœuf, le poisson et le poulet<sup>26</sup>. Il est important de noter que ces ingrédients sont aussi les plus présents dans l'alimentation des carnivores domestiques.

Dans le but de simplifier le diagnostic de ces réactions et l'acceptance par le propriétaire, un nouveau protocole plus court et avec une utilisation initiale de prednisolone a été proposé par Favrot et al. en 2019<sup>27</sup>.

## 12.3 Eléments clefs de l'accompagnement alimentaire

Outre les réactions cutanées à l'alimentation traitées dans la section Éléments généraux (12.2.2), l'alimentation peut aussi être un appui dans les thérapeutiques de la peau en la soutenant par un apport en nutriments équilibré, digestibles et avec des actions sur la physiologie cutanée.

#### 12.3.1 Protéines

La peau et les poils sont en grande partie constitués de protéines. Environ, 90% du poil est constitué de protéine (kératine). Cela explique que lors des phases de croissances du poil, leur besoin protéique peut représenter jusqu'à 30% de l'apport en protéines de l'animal². De plus, la kératine nécessite de la cystéine pour réaliser les ponts disulfures nécessaires à sa structure²8. Ainsi, en cas de carence protéique, on peut observer des desquamations et une diminution du diamètre des poils. Les carences importantes en protéines sont rares en dehors de contexte pathologique ou de phase de besoin intense en protéines, comme la gestation, la lactation ou la croissance. On notera qu'en cas de carence en protéines la cicatrisation est aussi ralentie.

Une carence ou un excès en certains acides aminés peu aussi avoir un impacte sur la pigmentation du pelage. En effet, l'eumélanine (noir) et la phéomélanine (fauve) sont produites à partir de la dopaquine. La dopaquine est quant elle produite à partir d'un acide aminé la tyrosine, pouvant lui-même être synthétisé à partir d'un autre acide aminé essentiel, la phénylalanine. Ainsi pour exprimer sa couleur de pelage l'animal à besoin d'avoir à la fois la capacité génétique de réaliser ces transformations, mais aussi la quantité suffisante de phénylalanine et de tyrosine apportée par l'alimentation, sous peine d'avoir une modification de la couleur de pelage ou de l'intensité de celle-ci. En effet, en plus du besoin de tyrosine pour la synthèse de dopaquine, un apport important en tyrosine favorise la voie de l'eumélanine par rapport à celle de la pheomélanine<sup>29</sup>. Ainsi, en cas de manque en ces acides aminés, le noir du pelage perdra en intensité pour tendre vers le rouge<sup>30-32</sup>. Il est à noter que chez le chat le besoin en tyrosine et phénylalanine nécessaire à maintenir pour avoir une couleur noire optimale du pelage est supérieure à celle pour assurer la croissance<sup>33</sup>. Enfin, l'apport en ces

deux acides aminés peut aussi avoir une incidence sur la couleur des animaux blancs. Chez le berger blanc Suisse, un apport élevé en tyrosine et phénylalanine est associé avec une légère coloration du pelage en jaune-rouge et, par conséquent, à une perte de la profondeur du blanc<sup>30</sup>.

## 12.3.2 Acides gras oméga 6 et 3

Les acides gras oméga 6 et 3 sont fondamentaux dans le fonctionnement normal de la peau. On peut simplifier leur rôle en deux catégories structurant et inflammatoire.

Considérant le rôle structurant des acides gras pour la peau, il est assuré par les acides gras oméga 6. La figure 12.1 présente un rappel des différents oméga 6 et de leur voie de synthèse. L'acide linoléique entre dans la composition des céramides de la peau. Ceux-ci assurent l'imperméabilité de la peau et évitent les pertes d'eau transcutanées<sup>34</sup>. En cas de carence en acide linoléique, celui-ci est remplacé dans les céramides par de l'acide oléique bien moins efficace dans ce rôle<sup>35</sup>. Ce remplacement a pour conséquence une perte de la brillance du poil, celui-ci devient rêche, la peau paraît plus grasse avec des squames collantes. A l'inverse, un aliment riche en acide linoléique augmente la brillance du poil et la qualité du pelage<sup>36</sup>. Le second oméga 6 important est l'acide arachidonique. La prostaglandine E<sub>2</sub>, synthétisée à partir de l'acide arachidonique, stimule la prolifération des cellules épithéliales. En absence d'acide arachidonique, la peau s'amincit et devient plus fragile.

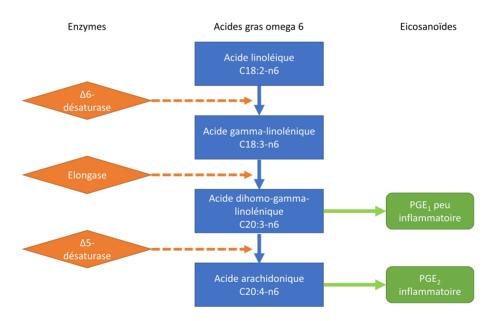



FIGURE 12.1: Différents oméga 6 et leurs transformations chez les mammifères. Les flèches pleines indiquent une transformation, les flèches en tirets indiquent l'action de l'enzyme. Le chat n'a pas de  $\Delta 6$ -désaturase fonctionnelle.

Considérant le rôle des acides gras dans l'inflammation en tant que précurseur des eicosanoïdes, il a été abordé de nombreuses fois dans les précédents chapitres, où l'intérêt des acides eicosapentaénoïque et docosahexaénoïque a été détaillé. Ici, l'auteur souhaite attirer l'attention sur un autre acide gras qui est utilisé avec les deux précédents, bien que moins connu, pour ses propriétés de modulateur de l'inflammation, l'acide gamma-linolénique. Comme le montre la figure 12.1, cet acide

gras est peu être produit à partir de l'acide linoléique par l'activité de la  $\Delta 6$ -désaturase. Cependant, cette enzyme n'est pas active chez le chat et serait assez peu active chez le chien. De plus, cette activité enzymatique serait réduite en cas de dermatite atopique<sup>37-39</sup>. Or l'acide gamma-linoléique permet la synthèse d'acide dihomo-gamma-linolénique à l'origine d'eicosanoïde de type 1 dont le  $PGE_1$ , ayant une action peu inflammatoire. Ainsi une supplémentation en acide gamma-linoléique augmente la circulation d'acide dihomo-gamma-linolénique<sup>1,40</sup>, avec un potentiel rôle bénéfique sur l'inflammation.

La supplémentation en acide eicosapentaénoïque et docosahexaénoïque avec, selon les articles, de l'acide gamma-linolénique et de l'acide linoléique, permet une modulation efficace de l'inflammation, du prurit et a un effet bénéfique sur la structure cutanée<sup>41</sup>. Cette efficacité, même si elle est sans commune mesure avec celle des immunomodulateurs médicamenteux, permet de réduire significativement les doses de cyclosporine dans le cas de chien souffrant de dermatite atopique et de façon générale de permettre un meilleur contrôle des affections cutanées<sup>42-44</sup>. Cependant, aujourd'hui les doses efficaces de ces supplémentations sont mal connues. De plus, tout ajout d'acide gras polyinsaturés doit s'accompagner d'une vérification des apports en vitamine E pour limiter le risque de panstéatite.

Cette section illustre particulièrement bien le fait qu'il ne faut pas avoir une vision manichéenne des acides gras essentiels, en encensant les oméga 3 et en diabolisant les oméga 6. Chacun a son rôle spécifique et n'est pas substituable par les autres. De plus du fait des limitations des enzymes de leur métabolisme<sup>45</sup>, il faut, autant que possible, analyser les apports en chacun des acides gras et non par famille.

### 12.3.3 Zinc et cuivre

Le zinc est impliqué dans l'expression génétique et dans certaines métalloprotéases dont l'activité permet la migration des keratinocytes<sup>3</sup>. Par conséquent, en cas de carence en zinc l'intégrité de la peau, sa cicatrisation et son organisation sont perturbées. Le signe le plus caractéristique de cette carence est la présence d'une hyperkératose au niveau des jonctions muco-cutanées. De plus, une décoloration partielle des poils est observée chez certains chiens noirs<sup>46</sup>.

Les carences en zinc s'observent principalement chez les races nordiques (Malamute de l'Alaska, Husky sibérien, Esquimau Américain) ayant un déficit dans les transporteurs intestinaux de zinc<sup>47,48</sup>. Dans d'autres rares cas, des apports excessifs en calcium et/ou en phytates ont un effet négatif sur l'absorption du zinc ce qui peut entrainer des carences<sup>46,49-51</sup>. Enfin, il semble que le zinc agisse en synergie avec les acides gras polyinsaturés sur la qualité du pelage et que ceux-ci puissent inhiber les effets d'une carence en zinc<sup>36,52</sup>.

Pour ce qui est du cuivre il est cofacteur de l'activité de la tyrosinase<sup>53</sup>. Ainsi, lors d'une carence en cuivre la dopaquine ne peut plus être synthétisé ce qui conduit à une perte de coloration du pelage, les poils noirs deviennent gris<sup>54</sup>.

#### 12.3.4 Vitamines A et B

La vitamine A est impliquée dans la différenciation cellulaire et dans la kératinisation de l'épithélium. Ainsi les excès comme les carences en vitamine à peuvent causer des lésions cutanées. On peut notamment citer des desquamations, des alopécies, une mauvaise qualité de pelage ou une sensibilité aux pyodermites<sup>2,3</sup>.

Certaines séborrhées idiopathiques répondent à une supplémentation en vitamine A. Cette affection rare touche plus particulièrement les cockers. Les doses rapportées dans ces cas afin d'obtenir la résolution des symptômes sont de 600 à 800 UI/ kg<sup>55-57</sup>.

Les vitamines B par leur implication dans de nombreux métabolismes peuvent aussi être à l'origine de lésions cutanées. Ainsi, de nombreux aliments avec une indication pour les affections cutanées sont supplémenté en vitamines B.

### 12.4 Les aliments commerciaux

Comme précisé plus haut, il est possible d'utiliser dans le cas de réactions cutanées à l'alimentation des aliments avec des protéines hydrolysées ou avec une source de protéines spécifique. Ces aliments ayant été traités par ailleurs (section 11.4), nous nous limiterons à l'étude des aliments avec une indication "dermatologie".

Les alimentations ayant une indication "affection cutanée", "dermatologie" ou comme le définit la directive  $n^{\circ}$  38/2008 : "Soutien de la fonction dermique en cas de dermatose et de dépilation", doivent avoir une teneur élevée en acides gras essentiels (sans spécification de quantité dans la directive).

La figure 12.2 met en lumière les quantités importantes d'oméga 3 des aliments "dermatologie" par rapport aux aliments physiologiques. Il est aussi remarquable que l'apport en oméga 6 est dans le haut de celui des aliments physiologiques pour chien et bien supérieur à celui des aliments physiologiques pour les aliments thérapeutiques à destination du chat. L'importance des oméga 3 et plus particulièrement des oméga 3 à chaîne longue comme l'acide eicosepentaénoïque est confirmée par la figure 12.3.

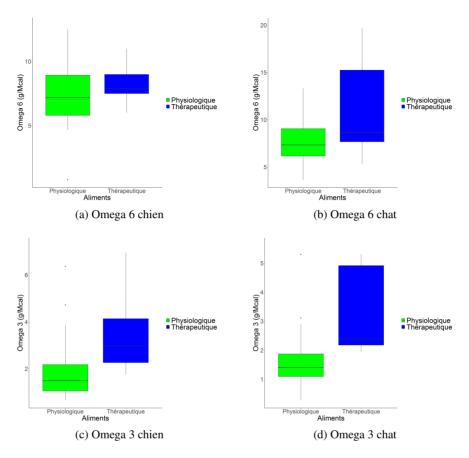



FIGURE 12.2: Apport en Omega 6 et Omega 3 des aliments avec une indication Soutien de la fonction dermique en cas de dermatose et de dépilation du chien et du chat, par rapport aux aliments physiologiques des marques vétérinaires.

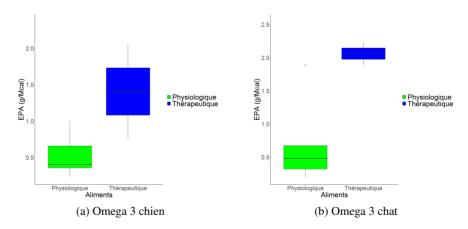



FIGURE 12.3: Apport en EPA des aliments avec une indication Soutien de la fonction dermique en cas de dermatose et de dépilation du chien et du chat, par rapport aux aliments physiologiques des marques vétérinaires.

Conclusion 195

## 12.5 Conclusion

Dans le cadre des affections cutanées, la nutrition apporte un soutien à la thérapeutique. Elle peut aussi, pour les réactions cutanées à l'alimentation, être une partie intégrante de la thérapeutique. La rigueur dans la préparation et la sélection des aliments est la clef pour le diagnostic et la prise en charge de cette affection.

#### 12.6 Exercices

Exercice 12.1 Dingo est un chien bouledogue français mâle stérilisé de 3 ans et de 10 kg (NEC 3/5). Le propriétaire rapporte une activité normale. Depuis ses 8 mois, il présente un prurit périanal et des conjonctivites récurrentes non saisonniers. A la suite de chacun des repas de Dingo, le propriétaire rapporte un abattement et un ptyalisme abondant.

Dingo reçoit pour le moment le seul aliment avec lequel il n'ait aucune réaction : Ownat Hypoallergénique au saumon.

Précédemment il a reçu les aliments suivants, avec tous il présentait au moins du ptyalisme dans l'heure suivant la fin du repas :

- Farmina Natural and Delicious Poisson et orange
- RC Anallergenic
- RC gastro-intestinal
- Proplan Agneau adulte
- Hill's GI Biome
- Proplan Gastro-intestinal
- Proplan Saumon adulte

Le propriétaire de Dingo souhaite réaliser une ration ménagère, que lui proposez-vous comme rations à court terme, si aucune réaction n'est observée, à plus long terme?

### 12.7 Références

- [1] Linda P. CASE et al. "Chapter 31 Nutritionally Responsive Dermatoses". In: Canine and Feline Nutrition (THIRD EDITION). Saint Louis: Mosby, 2011, pages 381-408. ISBN: 978-0-323-06619-8. URL: http://www.sciencedirect.com/science/article/pii/B9780323066198100313 (visité le 06/12/2016) (cf. pages 187, 189, 192).
- [2] Danny W. SCOTT, WilliamH MILLER et C. E. GRIFFIN. *Small Animal Dermatology*. Saunders, 2001 (cf. pages 187, 190, 192).
- [3] Catherine OUTERBRIDGE. "Nutritional Management of Skin Diseases". In: *Applied Veterinary Clinical Nutrition*. Sous la direction d'Andrea J. FASCETTI et Sean J. DELANEY. Chichester, West Sussex; Ames, Iowa: John Wiley & Sons, 2012, pages 175-219. ISBN: 978-0-8138-0657-0 (cf. pages 188, 192).
- [4] Claude FAVROT et al. "A Prospective Study on the Clinical Features of Chronic Canine Atopic Dermatitis and Its Diagnosis". In: *Vet. Dermatol.* 21.1 (fév. 2010), pages 23-31. ISSN: 1365-3164. DOI: 10.1111/j.1365-3164.2009.00758.x. pmid: 20187911 (cf. page 189).
- [5] F. PICCO et al. "A Prospective Study on Canine Atopic Dermatitis and Food-Induced Allergic Dermatitis in Switzerland". In: *Veterinary Dermatology* 19.3 (2008). \_eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1365-3164.2008.00669.x, pages 150-155. ISSN: 1365-3164. DOI: 10.1111/j.1365-3164.2008.00669.x (cf. page 189).

- [6] Patrick HENSEL et al. "Canine Atopic Dermatitis : Detailed Guidelines for Diagnosis and Allergen Identification". In : *BMC Veterinary Research* 11.1 (11 août 2015), page 196. ISSN : 1746-6148. DOI : 10.1186/s12917-015-0515-5 (cf. page 189).
- [7] Andrew HILLIER et Craig E GRIFFIN. "The ACVD Task Force on Canine Atopic Dermatitis (X): Is There a Relationship between Canine Atopic Dermatitis and Cutaneous Adverse Food Reactions?" In: *Veterinary Immunology and Immunopathology*. The ACVD Task Force on Canine Atopic Dermatitis 81.3 (20 sept. 2001), pages 227-231. ISSN: 0165-2427. DOI: 10.1016/S0165-2427(01)00302-6 (cf. page 189).
- [8] Thierry OLIVRY et Ralf S. MUELLER. "Critically Appraised Topic on Adverse Food Reactions of Companion Animals (3): Prevalence of Cutaneous Adverse Food Reactions in Dogs and Cats". In: *BMC Vet Res* 13.1 (15 fév. 2017), page 51. ISSN: 1746-6148. DOI: 10.1186/s12917-017-0973-z (cf. page 189).
- [9] D. PROVERBIO et al. "Prevalence of Adverse Food Reactions in 130 Dogs in Italy with Dermatological Signs: A Retrospective Study". In: *Journal of Small Animal Practice* 51.7 (2010). \_eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1748-5827.2010.00951.x, pages 370-374. ISSN: 1748-5827. DOI: 10.1111/j.1748-5827.2010.00951.x (cf. page 189).
- [10] Elisa MAINA, Mario GALZERANO et Chiara NOLI. "Perianal Pruritus in Dogs with Skin Disease". In: *Vet. Dermatol.* 25.3 (juin 2014), 204-e52. ISSN: 1365-3164. DOI: 10.1111/vde.12127. pmid: 24797215 (cf. page 189).
- [11] Ralf S. MUELLER et Thierry OLIVRY. "Critically Appraised Topic on Adverse Food Reactions of Companion Animals (6): Prevalence of Noncutaneous Manifestations of Adverse Food Reactions in Dogs and Cats". In: *BMC Vet Res* 14.1 (12 nov. 2018), page 341. ISSN: 1746-6148. DOI: 10.1186/s12917-018-1656-0 (cf. page 189).
- [12] E. A. HAGEN-PLANTINGA et al. "Measurement of Allergen-Specific IgG in Serum Is of Limited Value for the Management of Dogs Diagnosed with Cutaneous Adverse Food Reactions". In: *The Veterinary Journal* 220 (1er fév. 2017), pages 111-116. ISSN: 1090-0233. DOI: 10.1016/j.tvjl.2017.01.009 (cf. page 189).
- [13] F. MAZZERANGHI et al. "Clinical Efficacy of Nutraceutical Diet for Cats with Clinical Signs of Cutaneus Adverse Food Reaction (CAFR)". In: *Polish Journal of Veterinary Sciences* 20.2 (1<sup>er</sup> mar. 2017), pages 269-276. ISSN: 2300-2557. DOI: 10.1515/pjvs-2017-0032 (cf. page 189).
- [14] sd White et Sequoia D. "Food Hypersensitivity in Cats: 14 Cases (1982-1987)". In: *J Am Vet Med Assoc* 194.5 (1er mar. 1989), pages 692-695. ISSN: 0003-1488, 1943-569X. pmid: 2925487. URL: https://europepmc.org/article/med/2925487 (visité le 12/03/2020) (cf. page 189).
- [15] Stefan Hobi et al. "Clinical Characteristics and Causes of Pruritus in Cats: A Multicentre Study on Feline Hypersensitivity-Associated Dermatoses". In: *Veterinary Dermatology* 22.5 (2011). \_eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1365-3164.2011.00962.x, pages 406-413. ISSN: 1365-3164. DOI: 10.1111/j.1365-3164.2011.00962.x (cf. page 189).

[16] Thierry OLIVRY et al. "Treatment of Canine Atopic Dermatitis: 2010 Clinical Practice Guidelines from the International Task Force on Canine Atopic Dermatitis". In: *Veterinary Dermatology* 21.3 (2010). \_eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1365-3164.2010.00889.x, pages 233-248. ISSN: 1365-3164. DOI: 10.1111/j.1365-3164.2010.00889.x (cf. page 189).

- [17] Ralf S. MUELLER et Thierry OLIVRY. "Critically Appraised Topic on Adverse Food Reactions of Companion Animals (4): Can We Diagnose Adverse Food Reactions in Dogs and Cats with in Vivo or in Vitro Tests?" In: *BMC Veterinary Research* 13.1 (30 août 2017), page 275. ISSN: 1746-6148. DOI: 10.1186/s12917-017-1142-0 (cf. page 189).
- [18] K. COYNER et A. SCHICK. "Hair and Saliva Test Fails to Identify Allergies in Dogs". In: *J Small Anim Pract* 60.2 (fév. 2019), pages 121-125. ISSN: 1748-5827. DOI: 10.1111/jsap. 12952. pmid: 30371955 (cf. page 189).
- [19] Cornelia JOHANSEN, Claire MARIANI et Ralf S. MUELLER. "Evaluation of Canine Adverse Food Reactions by Patch Testing with Single Proteins, Single Carbohydrates and Commercial Foods". In: *Vet. Dermatol.* 28.5 (oct. 2017), 473-e109. ISSN: 1365-3164. DOI: 10.1111/vde.12455. pmid: 28544017 (cf. page 189).
- [20] Claude FAVROT et al. "Western Blot Analysis of Sera from Dogs with Suspected Food Allergy". In: *Vet. Dermatol.* 28.2 (avr. 2017), 189-e42. ISSN: 1365-3164. DOI: 10.1111/vde.12412. pmid: 28090706 (cf. page 189).
- [21] Jonathan I. HARDY et al. "Food-Specific Serum IgE and IgG Reactivity in Dogs with and without Skin Disease: Lack of Correlation between Laboratories". In: *Vet. Dermatol.* 25.5 (oct. 2014), 447-e70. ISSN: 1365-3164. DOI: 10.1111/vde.12137. pmid: 24890097 (cf. page 189).
- [22] Thierry OLIVRY et Ralf S. MUELLER. "Critically Appraised Topic on Adverse Food Reactions of Companion Animals (5): Discrepancies between Ingredients and Labeling in Commercial Pet Foods". In: *BMC Veterinary Research* 14.1 (22 jan. 2018), page 24. ISSN: 1746-6148. DOI: 10.1186/s12917-018-1346-y (cf. page 190).
- [23] Thierry OLIVRY et Ralf S. MUELLER. "Critically Appraised Topic on Adverse Food Reactions of Companion Animals (7): Signalment and Cutaneous Manifestations of Dogs and Cats with Adverse Food Reactions". In: *BMC Veterinary Research* 15.1 (9 mai 2019), page 140. ISSN: 1746-6148. DOI: 10.1186/s12917-019-1880-2 (cf. page 190).
- [24] C. E. HIBBERSON et L. J. VOGELNEST. "Storage Mite Contamination of Commercial Dry Dog Food in South-Eastern Australia". In: *Australian Veterinary Journal* 92.6 (2014). \_eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1111/avj.12185, pages 219-224. ISSN: 1751-0813. DOI: 10.1111/avj.12185 (cf. page 190).
- [25] Pilar Brazis et al. "Evaluation of Storage Mite Contamination of Commercial Dry Dog Food". In: *Vet. Dermatol.* 19.4 (août 2008), pages 209-214. ISSN: 0959-4493. DOI: 10.1111/j.1365-3164.2008.00676.x. pmid: 18494758 (cf. page 190).
- [26] Ralf S. MUELLER, Thierry OLIVRY et Pascal PRÉLAUD. "Critically Appraised Topic on Adverse Food Reactions of Companion Animals (2): Common Food Allergen Sources in Dogs and Cats". In: *BMC Veterinary Research* 12.1 (12 jan. 2016), page 9. ISSN: 1746-6148. DOI: 10.1186/s12917-016-0633-8 (cf. page 190).

- [27] Claude FAVROT et al. "The Usefulness of Short-Course Prednisolone during the Initial Phase of an Elimination Diet Trial in Dogs with Food-Induced Atopic Dermatitis". In: *Veterinary Dermatology* 30.6 (2019). \_eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1111/vde.12793, 498-e149. ISSN: 1365-3164. DOI: 10.1111/vde.12793 (cf. page 190).
- [28] Yutaka SHIMOMURA et al. "Characterization of Human Keratin-Associated Protein 1 Family Members". In: *J. Investig. Dermatol. Symp. Proc.* 8.1 (juin 2003), pages 96-99. ISSN: 1087-0024. DOI: 10.1046/j.1523-1747.2003.12180.x. pmid: 12895003 (cf. page 190).
- [29] A. SŁOMINSKI et al. "Positive Regulation of Melanin Pigmentation by Two Key Substrates of the Melanogenic Pathway, L-Tyrosine and L-Dopa". In: *J. Cell. Sci.* 89 (Pt 3) (mar. 1988), pages 287-296. ISSN: 0021-9533. pmid: 3143738 (cf. page 190).
- [30] Adrian WATSON et al. "Tyrosine Supplementation and Hair Coat Pigmentation in Puppies with Black Coats A Pilot Study". In: *Journal of Applied Animal Nutrition* 3 (2015/ed). ISSN: 2049-257X. DOI: 10.1017/jan.2015.8 (cf. pages 190, 191).
- [31] S. Yu, Q. R. ROGERS et J. G. MORRIS. "Effect of Low Levels of Dietary Tyrosine on the Hair Colour of Cats". In: *J Small Anim Pract* 42.4 (avr. 2001), pages 176-180. ISSN: 0022-4510. DOI: 10.1111/j.1748-5827.2001.tb01798.x. pmid: 11327664 (cf. page 190).
- [32] James G. MORRIS, Shiguang YU et Quinton R. ROGERS. "Red Hair in Black Cats Is Reversed by Addition of Tyrosine to the Diet". In: *J Nutr* 132.6 (1<sup>er</sup> juin 2002), 1646S-1648S. ISSN: 0022-3166. DOI: 10.1093/jn/132.6.1646S (cf. page 190).
- [33] Peter J. B. Anderson, Quinton R. Rogers et James G. Morris. "Cats Require More Dietary Phenylalanine or Tyrosine for Melanin Deposition in Hair than for Maximal Growth". In: *J. Nutr.* 132.7 (juil. 2002), pages 2037-2042. ISSN: 0022-3166. DOI: 10.1093/jn/132.7.2037. pmid: 12097689 (cf. page 190).
- [34] Adrian WATSON et al. "Evidence for an Interaction between Linoleic Acid Intake and Skin Barrier Properties in Healthy Dogs a Pilot Study". In: *Journal of Applied Animal Nutrition* 6 (2018/ed). ISSN: 2049-257X. DOI: 10.1017/JAN.2018.6 (cf. page 191).
- [35] Philip W. WERTZ, El Soon CHO et Donald T. DOWNING. "Effect of Essential Fatty Acid Deficiency on the Epidermal Sphingolipids of the Rat". In: *Biochimica et Biophysica Acta* (*BBA*) *Lipids and Lipid Metabolism* 753.3 (11 oct. 1983), pages 350-355. ISSN: 0005-2760. DOI: 10.1016/0005-2760(83)90058-9 (cf. page 191).
- [36] K. A. MARSH et al. "Effects of Zinc and Linoleic Acid Supplementation on the Skin and Coat Quality of Dogs Receiving a Complete and Balanced Diet". In: *Veterinary Dermatology* 11.4 (2000). \_eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1046/j.1365-3164.2000.00202.x, pages 277-284. ISSN: 1365-3164. DOI: 10.1046/j.1365-3164.2000.00202.x (cf. pages 191, 192).
- [37] B. K SÆVIK, S. I THORESEN et O TAUGBØL. "Fatty Acid Composition of Serum Lipids in Atopic and Healthy Dogs". In: *Research in Veterinary Science* 73.2 (1<sup>er</sup> oct. 2002), pages 153-158. ISSN: 0034-5288. DOI: 10.1016/S0034-5288(02)00043-7 (cf. page 192).
- [38] Herbert FUHRMANN et al. "Erythrocyte and Plasma Fatty Acid Patterns in Dogs with Atopic Dermatitis and Healthy Dogs in the Same Household". In: Can J Vet Res 70.3 (juil. 2006), pages 191-196. ISSN: 0830-9000. pmid: 16850941. URL: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1477930/ (visité le 12/03/2020) (cf. page 192).

[39] O TAUGBØL, B BADDAKY-TAUGBØL et K SAAREM. "The Fatty Acid Profile of Subcutaneous Fat and Blood Plasma in Pruritic Dogs and Dogs without Skin Problems." In: Can J Vet Res 62.4 (oct. 1998), pages 275-278. ISSN: 0830-9000. pmid: 9798093. URL: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1189494/ (visité le 12/03/2020) (cf. page 192).

- [40] R. BOND et D. H. LLOYD. "A Double-Blind Comparison of Olive Oil and a Combination of Evening Primrose Oil and Fish Oil in the Management of Canine Atopy". In: *Vet. Rec.* 131.24 (12 déc. 1992), pages 558-560. ISSN: 0042-4900. pmid: 1481346 (cf. page 192).
- [41] Iuliana POPA et al. "Analysis of Epidermal Lipids in Normal and Atopic Dogs, before and after Administration of an Oral Omega-6/Omega-3 Fatty Acid Feed Supplement. A Pilot Study". In: *Vet. Res. Commun.* 35.8 (déc. 2011), pages 501-509. ISSN: 1573-7446. DOI: 10.1007/s11259-011-9493-7. pmid: 21786009 (cf. page 192).
- [42] Angela WITZEL-ROLLINS et al. "Non-Controlled, Open-Label Clinical Trial to Assess the Effectiveness of a Dietetic Food on Pruritus and Dermatologic Scoring in Atopic Dogs". In: *BMC Veterinary Research* 15.1 (28 juin 2019), page 220. ISSN: 1746-6148. DOI: 10.1186/s12917-019-1929-2 (cf. page 192).
- [43] M. R. MÜLLER et al. "Evaluation of Cyclosporine-Sparing Effects of Polyunsaturated Fatty Acids in the Treatment of Canine Atopic Dermatitis". In: *The Veterinary Journal* 210 (1er avr. 2016), pages 77-81. ISSN: 1090-0233. DOI: 10.1016/j.tvjl.2015.11.012 (cf. page 192).
- [44] D W SCOTT et al. "Effect of an Omega-3/Omega-6 Fatty Acid-Containing Commercial Lamb and Rice Diet on Pruritus in Atopic Dogs: Results of a Single-Blinded Study." In: Can J Vet Res 61.2 (avr. 1997), pages 145-153. ISSN: 0830-9000. pmid: 9114966. URL: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1189391/ (visité le 12/03/2020) (cf. page 192).
- [45] Brent L. DUNBAR, Karen E. BIGLEY et John E. BAUER. "Early and Sustained Enrichment of Serum N-3 Long Chain Polyunsaturated Fatty Acids in Dogs Fed a Flaxseed Supplemented Diet". In: *Lipids* 45.1 (1<sup>er</sup> jan. 2010), pages 1-10. ISSN: 1558-9307. DOI: 10.1007/s11745-009-3364-9 (cf. page 192).
- [46] A. H. M. van den BROEK et K. L. THODAY. "Skin Disease in Dogs Associated with Zinc Deficiency: A Report of Five Cases". In: *Journal of Small Animal Practice* 27.5 (1986). \_eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1748-5827.1986.tb02143.x, pages 313-323. ISSN: 1748-5827. DOI: 10.1111/j.1748-5827.1986.tb02143.x (cf. page 192).
- [47] Linda P. CASE et al. "Chapter 27 Inherited Disorders of Nutrient Metabolism". In: Canine and Feline Nutrition (THIRD EDITION). Saint Louis: Mosby, 2011, pages 297-311. ISBN: 978-0-323-06619-8. URL: http://www.sciencedirect.com/science/article/pii/B9780323066198100271 (visité le 06/12/2016) (cf. page 192).
- [48] S. COLOMBINI et R. W. DUNSTAN. "Zinc-Responsive Dermatosis in Northern-Breed Dogs: 17 Cases (1990-1996)". In: *J. Am. Vet. Med. Assoc.* 211.4 (15 août 1997), pages 451-453. ISSN: 0003-1488. pmid: 9267507 (cf. page 192).
- [49] Karen J. WEDEKIND et Stephen R. LOWRY. "Are Organic Zinc Sources Efficacious in Puppies?" In: *J Nutr* 128.12 (1<sup>er</sup> déc. 1998), 2593S-2595S. ISSN: 0022-3166. DOI: 10. 1093/jn/128.12.2593S (cf. page 192).

- [50] S. D. White et al. "Zinc-Responsive Dermatosis in Dogs: 41 Cases and Literature Review". In: *Veterinary Dermatology* 12.2 (2001). \_eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1046/j.1365-3164.2001.00233.x, pages 101-109. ISSN: 1365-3164. DOI: 10.1046/j.1365-3164.2001.00233.x (cf. page 192).
- [51] Sousa CA et al. "Dermatosis Associated with Feeding Generic Dog Food: 13 Cases (1981-1982)." In: J Am Vet Med Assoc 192.5 (1er mar. 1988), pages 676-680. ISSN: 0003-1488, 1943-569X. pmid: 3372323. URL: https://europepmc.org/article/med/3372323 (visité le 12/03/2020) (cf. page 192).
- [52] S. C. CUNNANE, G. E. SELLA et D. F. HORROBIN. "Essential Fatty Acid Supplementation Inhibits the Effect of Dietary Zinc Deficiency". In: *Adv Prostaglandin Thromboxane Res* 8 (1980), pages 1797-1798. ISSN: 0361-5952. pmid: 7377029 (cf. page 192).
- [53] Vincent J. HEARING et Mercedes JIMÉNEZ. "Mammalian Tyrosinase—The Critical Regulatory Control Point in Melanocyte Pigmentation". In: *International Journal of Biochemistry* 19.12 (1<sup>er</sup> jan. 1987), pages 1141-1147. ISSN: 0020-711X. DOI: 10.1016/0020-711X(87)90095-4 (cf. page 192).
- [54] Jürgen ZENTEK et Helmut MEYER. "Investigations on Copper Deficiency in Growing Dogs". In: *The Journal of Nutrition* 121 (suppl\_11 1er nov. 1991), S83-S84. ISSN: 0022-3166, 1541-6100. DOI: 10.1093/jn/121.suppl\_11.S83 (cf. page 192).
- [55] Pj IHRKE et Mh GOLDSCHMIDT. "Vitamin A-Responsive Dermatosis in the Dog." In: J Am Vet Med Assoc 182.7 (1<sup>er</sup> avr. 1983), pages 687-690. ISSN: 0003-1488, 1943-569X. pmid: 6221006. URL: https://europepmc.org/article/med/6221006 (visité le 12/03/2020) (cf. page 192).
- [56] D. W. SCOTT. "VITAMIN-A-RESPONSIVE DERMATOSIS IN THE COCKER-SPANIEL". In: *Journal of the American Animal Hospital Association* 22.1 (1986), pages 125-129 (cf. page 192).
- [57] E. GUAGUERE. "Cas Clinique : Séborrhée Primaire Répondant à l'administration de Vitamine A". In : *Point Vét* 16 (1984), pages 689-691 (cf. page 192).